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Abstract

In light of the massive energy consumption due to proof-of-work cryptocurrency

mining protocols, more environmentally-friendly proof-of-stake mining protocols are

becoming increasingly desirable. However, to sustain a healthy mining ecosystem, a

mining protocol must be fairly robust against strategic manipulation. This paper con-

tinues work by Ferreira and Weinberg [4] to determine the feasibility of strategic ma-

nipulation under a proof-of-stake mining protocol with access to external randomness.

Previously, Ferreira and Weinberg [4] showed that strategic manipulation is always pos-

sible when some miner owns more than 32.47% of the stake but never possible when

every miner owns less than 30.80% of the stake. Here, we are able to improve both

bounds in showing that strategic manipulation is always possible when some miner

owns more than 32.35% of the stake but never possible when every miner owns less

than 31.89% of the stake.
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1 Introduction

1.1 Motivation and Goal

Many successful cryptocurrencies such as Bitcoin [7] and Ethereum [11] employ proof-of-work

mining protocols. The main tenet of these proof-of-work mining protocols is that the proba-

bility that a miner in the network mines the next block is directly proportional to the miner’s

computational power and therefore the miner’s electricity consumption. For this reason, the

increasing valuation of Bitcoin, Ethereum, and other cryptocurrencies over the last decade

has ushered in massive electricity consumption. For reference, if we aggregated the annual

electricity consumption of all Bitcoin miners, then this would exceed the annual electricity

consumption of all but 26 countries.1 As a result, alternative more environmentally-friendly

mining protocols have become increasingly desirable.

One such alternative to proof-of-work mining protocols may be proof-of-stake mining

protocols, where the probability that a miner in the network mines the next block is directly

proportional to the proportion of the cryptocurrency that the miner owns. Accordingly,

although implementation dependent, proof-of-stake mining protocols may circumvent the

need for extensive calculations that explain the high electricity consumption among proof-of-

work protocols. Cryptocurrencies with proof-of-stake mining protocols have been successful

in practice, but have not achieved the renown of Bitcoin or Ethereum.

However, before we may advocate for the more widespread adoption of proof-of-stake

mining protocols, we must first thoroughly evaluate these mining protocols along the axis

of strategic manipulation. To understand strategic manipulation in the context of a cryp-

tocurrency, first recall that, for each cryptocurrency, there is a mining strategy advocated

by its creators or implied by the mining protocol; this strategy is referred to as the honest

mining strategy and the miners in the network who use this strategy are referred to as honest

1Source: https://ccaf.io/. Accessed 3/30/2022.
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miners. Then, strategic manipulation occurs when a miner in the network uses a strategy

other than the honest mining strategy and earns a greater revenue (than if they had used

the honest mining strategy). Such miners in the network who defect from using the honest

mining strategy and conduct strategic manipulation are said to attack the network and so

are referred to as attackers. A mining protocol is robust against strategic manipulation when

and only when it is a Nash equilibrium for all miner’s to play the honest mining strategy. If

a mining protocol is susceptible to strategic manipulation, rational miners will either defect

from using the honest mining strategy and attack the network or cease to mine altogether;

in either case, the health of the mining ecosystem, and by extension the fate of the cryp-

tocurrency, is threatened. Therefore, the feasibility of strategic manipulation hinders the

adoption of a cryptocurrency.

For a stylized model of a cryptocurrency with a proof-of-work mining protocol, the ro-

bustness against strategic manipulation can actually be quantified; following the notation

used by Ferreira and Weinberg [4], if we use αprotocol to denote the supremum α such that

whenever no miner mines the next block with probability bigger than α, it is a Nash equi-

librium for all miners to use the honest mining strategy in the stylized model, then previous

work has shown αPoW ≈ 0.329 [6, 8]. On the other hand, work by Brown-Cohen et al. [1]

shows that in a similar model that instead uses a proof-of-stake mining protocol without access

to external randomness, we have αPoS w/o External Randomness = 0. In other words, when using a

proof-of-stake mining protocol that lacks access to external randomness, it is never a Nash

equilibrium for all miners to use the honest mining strategy. However, yet another similar

model that instead uses a proof-of-stake mining protocol with access to external randomness

shows robustness to strategic manipulation on the scale of, but less than, the robustness of

the proof-of-work mining protocol. While unable to pinpoint the exact value, work by Fer-

reira and Weinberg [4] proves 0.3080 ≤ αPoS w/ External Randomness = αPoS ≤ 0.3247. Hereon,

if we refer to proof-of-stake mining protocols without specifying the presence or absence of

14



external randomness, it should be assumed that we are referring to proof-of-stake mining

protocols with access to external randomness.

Although αPoS, the robustness of proof-of-stake mining protocols against strategic manip-

ulation, is bounded within a nominally small range, there is nonetheless room for improve-

ment. Indeed, due to the high valuation of cryptocurrencies, even a marginal improvement

to either bound on αPoS corresponds to a vast difference in the monetary resources a miner

would have to expend to conduct strategic manipulation. To make this precise, recall that

in proof-of-stake mining protocols, the probability that a miner in the network mines the

next block is directly proportional to the proportion of the cryptocurrency that the miner

owns. So, a miner who wishes to raise their probability of mining the next block to meet the

αPoS threshold at which strategic manipulation becomes possible would have to buy some

proportion of the cryptocurrency, the cost of which can may be very expensive. By way

of example, suppose there is a cryptocurrency with a proof-of-stake mining protocol where

the probability that a miner mines the next block is exactly equal to the proportion of the

cryptocurrency that they own. Furthermore, suppose there is the same the number of coins

in circulation as Bitcoin (about 19,000,000 as of 3/30/2022). Finally, let the valuation of

one coin of our supposed cryptocurrency be the same as the valuation of one Bitcoin (about

$47,000 as of 3/30/2022). Then, for a miner to increase their probability of mining the next

block in our supposed cryptocurrency by as little as even 0.0001 would cost at least

19, 000, 000× 0.0001× $47, 000 = $89, 300, 000

Although we have used Bitcoin in the above example, substituting in other cryptocurrencies

would similarly reveal that a miner who wishes to increase their probability of mining the

next block faces a substantial monetary barrier. Therefore, pushing αPoS closer towards one

of the known bounds could either dissuade the adoption of proof-of-stake protocols (in the
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case of finding that αPoS is closer to the known lower bound) or inspire increased confidence

in the security of such protocols (in the case of finding that αPoS is closer to the known upper

bound).

Thus, motivated by the clear need for environmentally-friendly mining protocols that are

nonetheless robust to strategic manipulation to the extent that they may serve as viable

alternatives to the current proof-of-work mining protocols that dominate the contemporary

cryptocurrency landscape, the primary goal of this paper is to extend work by Ferreira and

Weinberg [4] to further bound αPoS, a quantity roughly understood to be the robustness of

proof-of-stake mining protocols with access to external randomness against strategic manip-

ulation. This work stands to benefit both cryptocurrency designers who wish to implement

such protocols as well as cryptocurrency miners who wish to align their resources, environ-

mental views, and incentives.

1.2 Approach

Since we are interested in improving either bound on αPoS, the robustness of proof-of-stake

mining protocols against strategic manipulation in our stylized model of a cryptocurrency,

our approach is twofold.

To improve the upper bound to αPoS, we will attempt to devise strategies that, assuming

all other miners are using the honest mining strategy, would earn a miner greater revenue

in expectation than the honest mining strategy. As Ferreira and Weinberg [4] have already

shown, such a strategy exists when a miner in the network has a probability of mining the

next block α > 0.3247; they have named this strategy Nothing-at-Stake Selfish Mining. The

existence of such a strategy immediately implies the known upper bound to αPoS; all miners

playing the honest mining strategy cannot be a Nash equilibrium when some miner has a

probability of mining the next block α > 0.3247 because this miner would be incentivized

to defect and play the Nothing-at-Stake Selfish Mining strategy. Therefore, if we present
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that such a strategy exists for even smaller values of α, namely some α such that 0.3080 ≤

α ≤ 0.3247, then we immediately improve the upper bound to αPoS. Note that the existing

literature [3, 4] provides precedence for how to both articulate and analyze the expected

revenue of a strategy.

Alternatively, to improve the lower bound to αPoS, we will attempt to prove qualitative

traits about a miner’s optimal strategy when their probability of mining the next block α is in

the known range of αPoS and all other miners are using the honest mining strategy. Consider

a state in the model at which the optimal strategy is currently unknown. At best, we can

upper bound the revenue from this state using tools like Lemma B.27, due to Ferreira and

Weinberg [4]. However, there is strong intuition that the resulting upper bound from Lemma

B.27 is considerably loose. Now, if we learn more structure about an optimal strategy, we

may be able to exactly determine the revenue from this state. Then, if there was indeed any

looseness in the previous upper bound on the revenue from this state, it immediately follows

that, in fact, an attacker may not be as profitable as previously thought from this state.

So, the protocol would be shown to be more robust than previously thought, or equivalently

that αPoS is higher than previously thought.

1.3 Results

By exploring both a theoretical and computational approach to the problem, we are able to

show that αPoS is in the range 0.3189 ≤ αPoS ≤ 0.3235, which is an improvement over the

previous range of 0.3080 ≤ αPoS ≤ 0.3247 due to Ferreira and Weinberg [4].

1.4 Roadmap

In Section 2 we describe our model and precisely define αPoS. In Section 3, we discuss the

related work, which will be easier to understand after reading the description of the model. In
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Section 4, we present a family of performant mining strategies to develop an upper bound to

αPoS. In Section 5, we prove that an optimal mining strategy exhibits several nice properties

to reduce the strategy space we must search over. In Section 6 we develop a tool to upper

bound the value of a state in the model to an optimal mining strategy. In Sections 7 and 8,

we prove that states in the model which meet certain conditions in fact reduce to simpler

states in the model which allows us to reduce the state space we must search over. In Sections

9 and 10 we collect the claims of the previous sections to prove what the optimal mining

strategy is from several states in the model and thereby lower bound αPoS. In Section 11, we

confirm that our derived upper bound to αPoS is loose, which leaves room for improvement in

future work. In Section 12 we switch to a more computational approach to the problem and

develop a codebase which automates the process of evaluating states that may occur in the

model. Finally, we summarize our work in Section 13 and outline several possible directions

for future work in Section 14.
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2 Model

This paper analyzes a model of a hypothetical cryptocurrency that uses a proof-of-stake

mining protocol with access to external randomness. In fact, this model is a two-player

game, and as such the terms model and game will be used interchangeably. This game is

the same game that is used by Ferreira and Weinberg [4], who in turn drew inspiration from

similar games used in [3, 6, 8]. Many of the design decisions behind this game are justified in

Ferreira and Weinberg [4], though omitted here for brevity. Instead, we will simply explain

the details of the game. Appendix A contains sample gameplay so that a reader may verify

their understanding of the game. Appendix L summarizes the notation used throughout this

paper, including both that which is introduced in this section as well as later sections.

2.1 Miner

In our hypothetical cryptocurrency, there will be only two miners. One miner will be known

as the honest miner, described as so because they faithfully execute the honest mining

strategy (which will be explained in Section 2.7). The other miner will be known as the

attacker, described as so because they will defect from the honest strategy and attempt

to conduct strategic manipulation to earn greater profit (than if they had used the honest

mining strategy).

Throughout an execution of the game, the attacker will have a probability α of mining

the next block (independent of any previous blocks or actions) and the honest miner will

have a probability 1 − α of mining the next block (independent of any previous blocks or

actions). Recall that this roughly corresponds to the attacker owning an α proportion of the

coin in circulation and the honest miner owning a 1−α proportion of the coin in circulation.

To emphasize the relation between α and the attacker’s ability to mine a block, we will

often refer to α as the attacker’s mining strength. We are usually only concerned with
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0.3080 ≤ α ≤ 0.3247 because the ability of an attacker to conduct strategic manipulation

for α outside of this range is already known by Ferreira and Weinberg [4]. In general, as we

derive new results, the range of α we consider will follow the tightest known bounds on αPoS.

Although only instantiating the game with two miners may initially seem limiting, it

turns out that the game works just the same if we consider several miners, all of which play

the honest mining strategy except for one who is trying to attack the network. That is, the

exact nature of the honest mining strategy allows us to aggregate all honest miners into just

one honest miner without changing how the game operates. Then, the probability 1 − α

that the aggregated honest miner mines the next block can be interpreted as the sum of the

individual honest miners’ probabilities of mining the next block, or equivalently as the sum

of the individual honest miners’ proportion of coin in circulation. Therefore, our choice of

two miners – an honest miner and an attacker – is an innocuous convenience.

2.2 Round

The game proceeds in rounds, where rounds are indexed by N+. At the start of each round,

a block is either mined by the honest miner or the attacker. For an execution of the game,

let Γt ∈ {A,H} be the random variable which is the miner that mines a block during round

t, with A representing the attacker and H representing the honest miner. Then, by our

assumption that the attacker has an α probability of mining the next block and the honest

miner has a 1−α probability of mining the next block, we have the following, where all such

Γt are independent and identically distributed:

Pr[Γt = A] = α ∀t ∈ N+

Pr[Γt = H] = 1− α ∀t ∈ N+
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Then, the random sequence of miners in an execution of the game is denoted:

Γ = (Γt)t∈N+

A realization of the random variable Γt is γt ∈ {A,H}. Then, if the game is at some

round t where Γ1 = γ1, ...,Γt = γt have already been drawn, we can denote the rounds up to

and including round t′ ≤ t during which the attacker mined a block as

TA(t
′) = {t | t ∈ N+, t ≤ t′, γt = A}

and similarly, the rounds up to and including round t′ ≤ t during which the honest miner

mined a block as

TH(t
′) = {t | t ∈ N+, t ≤ t′, γt = H}

As a final note, we will use the terms round, time, and time step interchangeably.

2.3 Block

As aforementioned, a block is created by exactly one of the miners at the start of each round.

Appropriately, we refer to the block mined on round b as block b, or just b. To promote

familiarity with the notation we will use, note that the following are equivalent ways to refer

to the same object:

• the block mined on round b

• block b

• b
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If the game is at some round t where Γ1 = γ1, ...,Γt = γt have already been drawn, then

for any t′ ≤ t, the set of blocks ≤ t′ owned by the attacker is exactly the set TA(t
′) defined

in the previous section. Similarly, for any t′ ≤ t, the set of blocks ≤ t′ owned by the honest

miner is exactly the set TH(t
′) defined in the previous section. In other words, at any point

in an execution of the game, the set of blocks owned by a given miner and the set of rounds

during which this miner mined a block will be identical.

When a block is mined, it is initially unpublished, which means that it does not point

to any other block. The miner who mined this block can later take actions to publish this

block, which means that this block now points to exactly one other block that was already

published (or is being published in the same action) and was mined during a strictly earlier

round. Note that a block may not go from being published to being unpublished; once a

block is published, it will point to the same block for the remainder of the game. Then, for a

published block b, we will use Pred(b) to denote the block that block b points to. By the rule

that a block must point to another block that was mined on a strictly earlier round, for any

published block b, we have Pred(b) < b. We will use UA(t) ⊆ TA(t) and UH(t) ⊆ TH(t) to

denote the blocks that the attacker and honest miner respectively have mined up to round

t but have not yet published by round t. Then, TH(t) \ UH(t) and TA(t) \ UA(t) are the

blocks that the honest miner and attacker respectively have mined up to round t that were

published on or before round t.

This notation allows us to define a block a which is an ancestor of a block b. An ancestor

of a block b is a block a for which you can follow zero or more pointers starting from b to

arrive at a. Obviously, this means that an unpublished block has no ancestors. This also

means that a block b is an ancestor of itself. If we use A(b) to denote the set of all ancestors
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of a published block b then we can define A(b) as follows:2

A(b) = {a | ∃i ∈ N0 s.t. Predi(b) = a}

Still more, once we have defined the set of ancestors of a block b, we can easily define

the height of a block b as h(b) = |A(b)| − 1 (the usefulness of which will become apparent in

Section 2.4).

Given only the discussion so far, it seems impossible to ever publish a block, since a

block must be published on some block which is already published. Indeed, towards this

purpose, there is one special block known as the genesis block, or block 0. The genesis block

is initialized at the start of every game prior to round 1. That is, unlike other blocks, the

genesis block is not mined by some miner. As such, the genesis block will not belong to

TA(t) or TH(t) for any t. Furthermore, addressing our issue, the genesis block is considered

to be published as soon as it is initialized, despite the fact that it does not point to any

other block. To handle the genesis block with our notation, we will say that, for all i ∈ N0,

Predi(0) = 0. Then, we have that A(0) = {0}, and h(0) = 0. Again, to promote familiarity

with the notation we will use, note that the following are equivalent ways to refer to the

same object:

• genesis block

• block 0

• 0

2Let Predi(b) = Pred(Pred(...Pred(b)...))︸ ︷︷ ︸
i times

and Pred0(b) = b
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2.4 Block Tree

During an execution of the game, the set of all blocks published on or before round t and

the set of pointers between these blocks induce a graph. That is, consider a directed graph

where the vertex set V (t) is the set of all blocks published on or before round t (including

block 0) and the set of edges is E(t) = {b → a : a, b ∈ V (t) \ {0},Pred(b) = a}. We will

borrow terminology from graph theory and alternatively refer to a block in the vertex set

V (t) as a node or vertex. By our construction of the set of edges E(t), a cycle exists in this

graph if and only if there exists a b ∈ V (t) \ {0}, i ∈ N+ such that Predi(b) = b. However,

since we know any block b ∈ V (t) \ {0} is related to the block it points to by the relation

Pred(b) < b, we can never have that Predi(b) = b. Therefore, this directed graph does not

contain cycles and so it is a tree. We will refer to this as the block tree at round t, notated

Tree(t) = (V (t), E(t)).

For a block tree Tree(t), we will define the longest chain in Tree(t) to be the block of

greatest height in Tree(t), breaking ties in favor of blocks published in earlier rounds, and

then in favor of earlier mined blocks. If we use C(Tree(t)) to denote the longest chain of

block tree Tree(t), then our definition equates to the following, where we will not express

tie-breaking conditions since these are tedious and will turn out not to be needed for the

strategies we will consider the attacker to use:

C(Tree(t)) = argmax
b∈V (t)

{h(b)}

The set of ancestors of the longest chain at round t, or A(C(Tree(t))), is known as the

longest path. This is important to calculating the payoff of a strategy, as will be shown in

Section 2.8. Finally, for i ∈ {0} ∪ [h(C(Tree(t)))] we will use Hi(Tree(t)) to denote the

block in A(C(Tree(t))) with height i.3

3For n ∈ N+ use [n] to denote the set [n] = {i ∈ N+ | i ≤ n}. Also, we will say that [0] = ∅.
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Figure 1: Example block tree Tree = (V,E) with vertex set V = {0, 1, 2, 3, 5, 7, 9} and edge
set E = {1→ 0, 2→ 1, 3→ 1, 5→ 3, 7→ 5, 9→ 5}. Suppose that blocks were published to
the tree in the order that the edges appear above. Note that blocks in the vertex set are not
contiguous because there may be unpublished blocks. Also, note that all blocks point to a
block of a lesser value. Finally, note that, although block 9 has the same height as block 7,
the calculation of the longest chain breaks ties in favor of earlier published blocks, and so, by
our assumption that 7 was published before 9, the longest chain is C(Tree) = 7. Therefore,
the longest path is A(C(Tree)) = {0, 1, 3, 5, 7}.

An example block tree is shown in Figure 1.

2.5 Action

After some miner mines a block in round t, each miner takes an action, with the honest miner

going first and the attacker going second. An an action is of the form PublishSet(V ′, E ′),

where this is understood to publish blocks V ′ with pointers described by E ′. An action

PublishSet(V ′, E ′) is valid if and only if, for Tree = (V,E) the current block tree and U the

set of unpublished blocks owned by the acting miner, it satisfies the following conditions:

• V ′ ⊆ U : The miner actually owns the blocks they are trying to publish and they have

not been published before.

• (∀v → v′ ∈ E ′)(v ∈ V ′, v′ ∈ V ∪ V ′): An edge points from a block the miner is trying

to publish to a block that is already published or being published in the same action.

• (∀v → v′ ∈ E ′)(v′ < v): An edge point to a block mined ion a strictly earlier round.

• (∀v ∈ V ′)(|{(v′ → v′′) : (v′ → v′′) ∈ E ′, v′ = v}| = 1): Each block being published has

exactly one outgoing pointer.
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A valid action PublishSet(V ′, E ′) adds blocks V ′ and edges E ′ to the block tree and

removes blocks V ′ from the acting miner’s set of unpublished blocks. More formally, if we

denote the block tree after the action is taken by Tree′ and acting miner’s set of unpublished

blocks after the action is taken by U ′, then these are as follows:

Tree′ = (V ∪ V ′, E ∪ E ′)

U ′ = U \ V ′

An action PublishSet(V ′, E ′) which yields tree Tree′ is said to fork the longest chain if

the longest chain in Tree is no longer in the longest path in Tree′. In other words, an

action forks the longest chain if C(Tree) /∈ A(C(Tree′)).

If the acting miner does not wish to publish any blocks, they may take the action

PublishSet(∅, ∅), which we will refer to as Wait. That is,

Wait = PublishSet(∅, ∅)

A few examples of PublishSet(V ′, E ′) actions are included as Figure 2.

2.6 State

Compiling the components above, the 5-tuple (Tree(t),UA(t),UH(t), TA(t), TH(t)) com-

pletely describes the state of the game at the end of round t. The initial state of the game

is (({0}, ∅), ∅, ∅, ∅, ∅), where neither miner has mined any blocks and the block tree only

contains the genesis block. More generally, the set of all valid states is defined inductively:

• (({0}, ∅), ∅, ∅, ∅, ∅) is a valid state.

• If ((V,E),UA,UH , TA, TH) is a valid state with b = max{V ∪ TA ∪ TH} the maximum

block in the game so far, then all of the following are also valid states:
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Figure 2: Depicted at the top of this figure is the same block tree as Figure 1, except with
most of the annotations removed. Additionally, we have supposed U , the acting miner’s set of
unpublished blocks, to be U = {6, 8}, which is consistent with the block tree because neither
of these blocks already appear in the block tree. Then, the block tree at the bottom-left
represents the result of the acting miner taking valid action PublishSet({6, 8}, {8 → 6, 6 →
5}) at the game state depicted at the top of the figure. Since the longest chain prior to this
action was block 7, which is no longer in the longest path which is now {0, 1, 3, 5, 6, 8}, this
action has forked the longest chain. The block tree at the bottom-right represents the result
of the acting miner taking valid action PublishSet({8}, {8→ 7}) at the game state depicted
at the top of the figure. This action does not fork the longest chain, since it simply publishes
one block on top of the longest chain.
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– ((V,E),UA ∪ {b+ 1},UH , TA ∪ {b+ 1}, TH): The attacker mined a block.

– ((V,E),UA,UH ∪ {b+ 1}, TA, TH ∪ {b+ 1}): The honest miner mined a block.

– ((V ∪ V ′, E ∪ E ′),UA \ V ′,UH , TA, TH): The attacker took the valid action

PublishSet(V ′, E ′).

– ((V ∪ V ′, E ∪ E ′),UA,UH \ V ′, TA, TH): The honest miner took the valid action

PublishSet(V ′, E ′).

Recall that, in each round, a miner mines a block, the honest miner takes an action,

then the attacker takes an action, in that order. Therefore, a single round in the game may

transition through several different states. As a notational convenience, the usefulness of

which will become clearer later, for any state

B = (Tree(t),UA(t),UH(t), TA(t), TH(t))

of the game at the end of round t, we introduce the notation

BHalf =
(
TreeHalf(t),UHalf

A (t),UHalf
H (t), THalf

A (t), THalf
H (t)

)
which is the state of the game during round t after a block has been mined and after the

honest miner has taken an action but before the attacker has taken an action. In essence,

if B is the state of the game at the end of round t, BHalf is the state of the game roughly

halfway through round t, immediately before the attacker takes an action.

Additionally, to expand the expressiveness of our notational conventions, we overload all

of Tree(·), UA(·), UH(·), TA(·), TH(·), C(·), and Hi(·) to alternatively accept as an argument

a valid state B, with the resulting value being the respective object at state B (which is
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well-defined in all cases). That is,

B = (Tree(B),UA(B),UH(B), TA(B), TH(B))

C(B) = C(Tree(B))

Hi(B) = Hi(Tree(B))

Finally, we will specially denote a few states that frequently appear in our analysis. All

of the states listed below are visualized in Figure 3 for the reader’s convenience:

• B0 = (({0}, ∅), ∅, ∅, ∅, ∅)

• B0,1 = (({0, 1}, {1→ 0}), ∅, ∅, ∅, {1})

• B1,0 = (({0}, ∅), {1}, ∅, {1}, ∅)

• Bx,0 = (({0}, ∅), [x], ∅, [x], ∅)

• B1,x =
((
{0} ∪

⋃x+1
i=2 {i},

⋃x+1
i=3 {i→ i− 1} ∪ {2→ 0}

)
, {1}, ∅, {1},

⋃x+1
i=2 {i}

)
• BHalf

2,1 =
(
({0, 2}, {2→ 0}), {1, 3}, ∅, {1, 3}, {2}

)

2.7 Strategy

A strategy π is a deterministic function that maps any valid state B to a valid action at that

state. A miner is said to use a strategy if at every state B where they must take an action,

they take action π(B). Now, we are able to define the honest mining strategy, which we will

refer to as Honest:

Definition 2.1 (Honest). For any B a valid state and U(B) the set of unpublished blocks
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Figure 3: This figure visualizes common states B0, B0,1, B1,0, Bx,0, B1,x, and BHalf
2,1 . We

refer to such visualization as state diagrams. As indicated by the legend in the top-right,
blocks belonging to the attacker are drawn as squares with two borders, blocks belonging to
the honest miner are drawn as squares with one border, and the genesis block is drawn as
an eight-pointed star. All blocks are labeled with the round during which they were mined,
except for the genesis block which is labeled with ‘0’. Arrows represent edges in the block
tree, such that any block which is connected to at least one edge is published and part of
the block tree, whereas any block which is not connected to at least one edge is unpublished.
Finally, the light gray vertical lines and small printed numbers below them represent heights
in the tree. That is, for any block in the block tree, the height of this block can be found by
looking at the small printed number below the light gray vertical line that is immediately
to the right of this block. Although height is not defined for an unpublished block, what is
defined is the maximum height that this unpublished block can reach (see Definition B.24).
So, we will draw an unpublished block above the blocks in the block tree which have height
equal to the maximum height that the unpublished block can reach. Indeed, from such a
diagram, all component parts of the state may be inferred.
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owned by the acting miner, the strategy Honest selects action

Honest(B) = PublishSet
(
U(B),

⋃
v∈U(B)

{v → C(B)}
)

While this definition may look complicated, in practice this reduces to saying that when-

ever a miner using Honest mines a block, they will immediately publish it onto the longest

chain the next time it is their turn to take an action. At all rounds where the honest

miner has no unpublished blocks, they will simply play Wait. In other words, if a miner

uses Honest, then at the end of each round, their set of unpublished blocks will always be

empty.

Recall that we will assume that the honest miner always uses Honest. Additionally,

somewhat previewing what will follow, we will usually consider that the attacker uses a

strategy π that will publish infrequently. Then, we will often consider states in the game

where the honest miner has used Honest at all rounds so far and the attacker has not yet

published any of the blocks they have mined. So, while the previous 5-tuple notation allows

us to express any feasible valid state, it makes sense to introduce an abbreviated notation

for states that meet this criteria.

Definition 2.2 (Abbreviated State Notation). Abbreviate a state as B = (c1γ
′
1, ..., ct′γ

′
t′)

where ci ∈ N+, γi ∈ {A,H} for all i ∈ [t′] if

• state B occurs during round t =
∑t′

i=1 ci after one of the miners mines a block and

after the honest miner takes an action,

• for (γ1, ..., γt) the initial mining sequence up to round t, we have γ′
i = γk+

∑i−1
j=1 cj

for

all k ∈ [ci]. That is, the initial mining sequence up to round t is what is being used to

describe the state B, where runs of consecutive A’s or H’s have been grouped together

and given a multiplicative coefficient which is the number of such consecutive symbols,
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• and, this state meets the criteria above; namely, the honest miner has used Honest

during all rounds and the attacker has not yet published any blocks they have mined

Observe that when the honest miner has used Honest and the attacker has not yet

published any blocks, the mining sequence γ1, ..., γt fully determines all elements of the

traditional 5-tuple description of a state. Note that if ci = 1, we will omit the multiplicative

constant when we write the state in this format. Furthermore, for a state B written in this

abbreviated notation, let |B| =
∑t′

i=1 ci; for example |(A, 4H, 2A)| = 7. Using this notation,

we can easily express the common states mentioned in Section 2.6 and depicted in Figure 3:

• B0 = ()

• B0,1 = (H)

• B1,0 = (A)

• Bx,0 = (xA)

• B1,x = (A, xH)

• BHalf
2,1 = (A,H,A)

2.8 Revenue

The revenue of each miner in the game is the proportion of blocks they own in the longest

path as the number of rounds approaches infinity. For convenience, we will only introduce

notation for expressing the revenue of the attacker. Indeed, since the definition of revenue

is such that the attacker’s revenue and honest miner’s revenue must sum to one, the honest

miner’s revenue can always be derived from the attacker’s revenue. Then, as an intermediate

result, the revenue of the attacker up to round t when the mining sequence is γ1, ..., γt and
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the attacker uses strategy π is

Rev(t)
γ1,...,γt

(π) =
|A(C(Tree(t))) ∩ TA(t)|

h(C(Tree(t)))

Notably, revenue is only a function of the attacker’s strategy π since the honest miner’s

strategy is fixed; we always assume that the honest miner uses Honest. Now, the revenue

of the attacker when the attacker uses strategy π and mines each block independently with

probability α is

Rev(π, α) = EΓ

[
lim inf
t→∞

Rev
(t)
Γ (π)

]

Note that the expectation is over Γ = (Γt)t∈N+ where each Γt is independent and iden-

tically distributed with Pr[Γt = A] = α and Pr[Γt = H] = 1 − α. It is easy to see that

Rev(Honest, α) = α; when the attacker uses this strategy there will be a single path in

the block tree that contains all blocks mined over the duration of the game, of which an α

proportion will belong to the attacker in expectation since this is the probability that they

mine any given block.

2.9 Nash Equilibrium

Having established the revenue of the attacker, we can now define the quantity αPoS, the

robustness of proof-of-stake mining protocols with access to external randomness against

strategic manipulation.

To build up this definition, first consider that the following statements are equivalent:

• Strategic manipulation is possible when the attacker has probability α of mining each

block.

• ∃π ̸= Honest such that Rev(π, α) > Rev(Honest, α)
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• maxπ Rev(π, α) > Rev(Honest, α)

• It is not a Nash equilibrium for both miners to use Honest when the attacker has

probability α of mining each block.

Negating each statement, now consider that the following are equivalent:

• Strategic manipulation is not possible when the attacker has probability α of mining

each block.

• ∀π, Rev(π, α) ≤ Rev(Honest, α)

• maxπ Rev(π, α) ≤ Rev(Honest, α)

• It is a Nash equilibrium for both miners to use Honest when the attacker has proba-

bility α of mining each block.

Therefore, we can finally express αPoS:

αPoS = sup{α ∈ [0, 1] | max
π

Rev(π, α) ≤ Rev(Honest, α)}
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3 Related Work

Work on strategic manipulation within proof-of-work mining protocols began with the Bit-

coin whitepaper itself, where Nakamoto [7] advanced the claim that strategic manipulation

is not possible as long as no miner in the network mines the next block with probability

α > 1/2, implying that αPoW = 1/2. As Eyal and Sirer [3] later showed, this claim turned

out to be incorrect. As a counterexample, they developed the strategy SM which stands for

selfish mining and has been proven to outscore Honest for all α > 1/3, thus implying that

αPoW ≤ 1/3 [3]. The main idea behind this strategy is that the attacker will strategically

withhold blocks from the block tree and will use these blocks to fork the longest chain at

some later time. Inspired by the model and attack presented by Eyal and Sirer [3], a lower

bound of αPoW ≥ 0.3080 was later derived through pure mathematical reasoning by Kiayias

et al. [6]. Finally, taking an alternative computational approach, Sapirstein et al. [8] showed

that αPoW ≈ 0.329, making the robustness of proof-of-work mining protocols against strate-

gic manipulation a solved problem. While this paper focuses on strategic manipulation as

it pertains to proof-of-stake mining protocols, it is important to recap research on strategic

manipulation as it pertains to proof-of-work mining protocols to acknowledge the history of

the research question, gain intuition, and establish a reference for comparison.

When Brown-Cohen et al. [1] conducted research on strategic manipulation as it pertains

to proof-of-stake protocols, they derived the pessimistic result that all miners using Honest

is never a Nash equilibrium if the proof-of-stake protocol does not have access to external

randomness. Another way of expressing this is that αPoS w/o External Randomness = 0. On the

other hand, if the protocol has access to external randomness, the results become much more

favorable, as Ferreira and Weinberg [4] showed 0.3080 ≤ αPoS w/ External Randomness = αPoS ≤

0.3247. No authors since Ferreira and Weinberg [4] have narrowed these bounds on αPoS,

leaving the exact value of αPoS as an open research question, answering which is the precise
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goal of this paper.

Since this paper is most immediately related to [4], we will use several tools developed

in [4] towards our own analysis. As stated above, one such tool we have borrowed from [4]

is the model that we have detailed in Section 2. The rest of the tools we use from [4] are

detailed in Appendix B.
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4 n-Deficit Tolerance Family of Strategies

In this section, we will introduce a family of strategies which we call n-Deficit Tolerance.

From the definition of αPoS, the existence of a strategy π and mining strength α for which

Rev(π, α) > Rev(Honest, α) immediately imposes α as an upper bound to αPoS. From the

related work, the best previously known upper bound to αPoS is αPoS ≤ 0.3247, where this

upper bound is due to Ferreira and Weinberg’s [4] strategy NSM (which stands for nothing-

at-stake selfish mining strategy).4 As we will prove, there exists a strategy π belonging to

the n-Deficit Tolerance family of strategies such that, for all a > 0.3235, Rev(π, α) >

Rev(Honest, α). By the discussion above, this result imposes an improved upper bound

of αPoS ≤ 0.3235.

This family of strategies is inspired by Eyal and Sirer’s [3] strategy SM and Ferreira

and Weinberg’s [4] strategy NSM. In fact, both SM and NSM belong to the n-Deficit

Tolerance family of strategies. In addition to the common states already introduced in

Section 2.6, the n-Deficit Tolerance family of strategies relies on the following states of

interest, written using the abbreviated state notation and depicted in Figure 4:

• (A, xH,A) for x ≥ 2: The attacker mines and withholds a block, followed by the honest

miner mining and publishing x ≥ 2 blocks on the longest chain consecutively, followed

by the attacker mining and withholding block.

• (A, xH, 2A) for x ≥ 2: The attacker mines and withholds a block, followed by the

honest miner mining and publishing x ≥ 2 blocks on the longest chain consecutively,

followed by the attacker mining and withholding two blocks.

• (A, xH,A,H) for x ≥ 2: The attacker mines and withholds a block, followed by the

4Actually, we contributed to this upper bound by correcting a mistake in the analysis of Rev(NSM) in
the first version of [4]. Under this mistake, the upper bound on αPoS due to this strategy was claimed to
be αPoS ≤ 0.3277. After correcting this mistake, the upper bound on αPoS due to this strategy was actually
shown to be αPoS ≤ 0.3247.
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Figure 4: States diagrams for states (A, xH,A), (A, xH, 2A), and (A, xH,A,H which are
important to strategies in the n-Deficit Tolerance family of strategies.

honest miner mining and publishing x ≥ 2 blocks on the longest chain consecutively,

followed by the attacker mining and withholding block, followed by the honest miner

mining and publishing a block.

Now, we are ready to define the n-Deficit Tolerance family of strategies:

Definition 4.1 (i-Deficit Tolerance). Let (Xt)t≥0 be a mining game starting at state

X0 = B0. The strategy i-Deficit Tolerance, when used by the attacker, selects the

following actions:

• Play Wait at state B0.

• Play Wait at state B0,1 and capitulate from B0,1 to B0.

• Play Wait at state B1,0.

• From state B2,0, play Wait until the first time step τ ≥ 3 where |TA(Xτ )| = |TH(Xτ )|+1.

Then, at state XHalf
τ , play PublishPath(TA(Xτ ), 0) then capitulate from Xτ to B0.
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• For all x ∈ [i], play Wait at state B1,x.

• Play PublishPath({1, 3}, 0) at state BHalf
2,1 .

• For all x ∈ {2, ..., i}, play Wait at state (A, xH,A).

• For all x ∈ {2, ..., i}, from state (A, xH, 2A) play Wait until the first time step τ ≥ x+3

where

τ1 = min{t ≥ x+ 3 : |TA(Xt)| = |TH(Xt)|+ 1}

τ2 = min{t ≥ x+ 3 : |TA(Xt) \ TA ((A, xH)) | = |TH(Xt) \ TH ((A, xH)) |+ 1}

τ = min{τ1, τ2}

Then, at state XHalf
τ , if τ = τ1, play PublishPath(TA(Xτ ), 0). Else, at state XHalf

τ ,

if τ = τ2, play PublishPath (TA(Xτ ) \ TA ((A, xH)) , x+ 1). In either case, capitulate

from Xτ to B0.

• For all x ∈ {2, ..., i}, play Wait at state (A, xH,A,H) and capitulate from state

(A, xH,A,H) to B1,1.

• Play Wait at state B1,i+1 and capitulates from B1,i+1 to B0.

Definition 4.2 (n-Deficit Tolerance Family of Stategies). The n-Deficit Toler-

ance family of strategies is the set of all strategies i-Deficit Tolerance for i ∈ N+. In

other words:

n-Deficit Tolerance =
⋃
i∈N+

{i-Deficit Tolerance}

Observation 4.3 (SM ∈ n-Deficit Tolerance). Eyal and Sirer’s [3] strategy SM =

1-Deficit Tolerance ∈ n-Deficit Tolerance.
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Observation 4.4 (NSM ∈ n-Deficit Tolerance). Ferreira and Weinberg’s [4] strategy

NSM = 2-Deficit Tolerance ∈ n-Deficit Tolerance.

The membership of strategies developed by previous researchers to n-Deficit Toler-

ance already suggests that strategies in n-Deficit Tolerance take reasonable actions at

the states they encounter. Indeed, for 0.3080 ≤ α ≤ 0.3247, the range of α we are interested

in, a strategy π ∈ n-Deficit Tolerance already plays optimally at several states. In

particular, at state B0 the only valid action is Wait and no capitulation is available, so π

must be optimal at B0. The strategy π is also known to play optimally at state B0,1 by

Theorem B.2. Finally, since α ≤ 0.3247 satisfies the condition on α for Corollary B.33 and

Theorem B.4, for mining strengths in the range we are interested in, we know the strategy

π plays optimally at B2,0 and BHalf
2,1 by Corollary B.33 and Theorem B.4 respectively.

There are also states where a strategy π ∈ n-Deficit Tolerance takes an action which

is known to be optimal but makes a choice of capitulation which may or may not be optimal.

Consider states of the form B1,x or (A, xH,A,H) for some x ∈ N+. If π reaches such a state

during gameplay, π plays Wait. Indeed, since Wait is the only timeserving action at such

states, by Theorem B.1, Wait must be an optimal action at such states. However, we know

that π = i-Deficit Tolerance for some i ∈ N+ such that π does not capitulate from B1,x

for any x ∈ [i], π capitulates from B1,i+1 to B0, and π capitulates from (A, xH,A,H) to B1,1

for all x ∈ {2, ..., i}. None of these choices of capitulation have yet been proven optimal.

To provide some more intuition why we may expect strategies in this family to be highly

performant with respect to optimal strategies over the range of α we are interested in, we

can motivate the decisions made at states without such optimality guarantees over the action

or choice of capitulation. Note that these states are the only states where the strategy may

be improved. In the following discussion let π = i-Deficit Tolerance for some i ∈ N+.

In motivating these decisions, it will become apparent where the n-Deficit Tolerance

family of strategies gets its name. Finally, note that the intuition provided here will be the
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basis for a lot of proofs in the analysis to follow:

• B1,0: The only valid actions at state B1,0 are PublishPath({1}, 0) or Wait. The action

PublishPath({1}, 0) would establish block 1 as a checkpoint by Definition B.21. So, by

Theorem B.1, after publishing block 1, an optimal strategy would then capitulate to

B0. That is, if π published block 1 at this state, then π would only transition between

states B0, B0,1, and B1,0 and take the same action as Honest at all states such

that Rev(π, α) = Rev(Honest, α). Then, certainly π would not help us improve

the upper bound to αPoS. Therefore, for our purposes, π must play Wait at B1,0.

Now, regarding capitulation, suppose that π capitulated from B1,0. The only state

capitulation available at B1,0 is to capitulate to B0. But, in this case, π would again

transition between states B0, B0,1, and B1,0, except this time would not publish any

blocks. Therefore, the revenue of such a strategy would be zero, which can not help up

improve the upper bound to αPoS. So, for our purposes, π must not capitulate from

B1,0. Altogether, while π’s selected action and choice not to capitulate at B1,0 may not

be optimal, it is necessary for our use case.

• B1,x for x ∈ [i]: At this state, if the attacker’s hope is to eventually publish block 1 in

a timeserving manner, then the attacker is at a deficit of x blocks to do so; this idea of

a deficit is further conveyed in Figure 5. The probability of making up for this deficit

may be small, but it is still positive. On the other hand, if the attacker capitulates from

this state, they would have a zero probability of ever publishing block 1. Therefore, for

low values of x, where the deficit is small, it seems wasteful to capitulate since there

is still some chance that the attacker may mine enough blocks in the near future to

make up for this deficit. So, our intuition is that it is optimal to not capitulate from

this state, and indeed this is expressed in strategy π.

• (A, xH,A) for x ∈ {2, ..., i}: The only valid, timeserving actions at state (A, xH,A)
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State Diagram (w/ Deficit Visualization) Deficit to Publish Block 1

B1,3 3

(A, 3H,A) 2

(A, 3H, 2A) 1

(A, 3H,A,H) 3

Figure 5: Let B be a state and b be a block owned by the attacker which the attacker may
not publish at B in a timeserving manner. Let x be the smallest number of blocks, such that,
for mining game (Xt)t≥0 with X0 = B, if there is ever a time t ≥ 1 such that the attacker
has mined x more blocks than the honest miner between X0 and Xt, then the attacker may
publish block b in a timeserving manner. Without loss of generality, this definition reduces to
saying that x is the minimum number of blocks, such that, if the attacker mines x consecutive
blocks after B, they may publish b in a timeserving manner. Then, we say that, at state
B, the attacker is at deficit of x blocks to publish block b in a timeserving manner. Given
a state diagram for state B, one can determine the deficit of any block b which may not
be published at B in a timeserving manner by drawing attacker blocks until it is possible
to publish b in a timeserving manner; the deficit is precisely the number of attacker blocks
drawn in this process. The figure visualizes this process for four example states where there
is a deficit to publishing block 1 in a timeserving manner. We use blue, dashed, unnumbered
attacker blocks to denote the blocks we have drawn over the state diagram in this process.
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for x ∈ {2, ..., i} are PublishPath({x + 2}, x + 1) or Wait. However, the action

PublishPath({x + 2}, x + 1) would establish a checkpoint and so an optimal strategy

would subsequently capitulate to B0. Then, in some sense, the action PublishPath({x+

2}, x + 1) seems similar to an action that would be taken by Honest, since it pub-

lishes a single block on the longest chain and capitulates to B0. But, we are trying

to outperform Honest, so for our purposes, it seems that π should play Wait at this

state. Furthermore, for the same reasons as in the case of B1,x, especially because the

attacker is now only at a deficit of x − 1 blocks to publish block 1 in a timeserving

manner, it seems suboptimal to capitulate from this state. Both of these ideas are

reflected in strategy π.

• (A, xH, 2A) for x ∈ {2, ..., i}: At this state, there are several timeserving actions that

the attacker may take. One such timeserving action is PublishPath({x+ 2, x+ 3}, x),

which publishes two attacker blocks to the longest path and forks one honest miner

block from the longest path. This action would also establish a checkpoint and so an

optimal strategy would subsequently capitulate to B0, eliminating any possibility of

publishing block 1. Another such timeserving action is PublishPath({x+2, x+3}, x+1),

which publishes two attacker blocks to the longest path, doesn’t fork any honest miner

blocks from the longest path, and again establishes a checkpoint. However, something

that feels suboptimal about each of these actions is the fact that there doesn’t seem

to be any urgency to publishing these blocks. That is, consider that the attacker was

considering playing one of these two actions but instead plays Wait. Suppose that the

worse case scenario happens and the honest miner mines a block at the next time step.

Then, we will loosely claim that an action which is just as good is still available. That

is, consider that the attacker was planning to take action PublishPath({x+2, x+3}, x)

at (A, xH, 2A). Now, one time step later, they can instead take action PublishPath({x+

2, x+3}, x+1), which still publishes two attacker blocks to the longest path and forks
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one honest miner block from the longest path. On the other hand, consider that the

attacker was planning to take action PublishPath({x+2, x+3}, x+1) at (A, xH, 2A).

One time step later, they can still take the same action except that this action now

publishes two attacker blocks to the longest path and forks one honest miner block

from the longest path, which seems like a clear improvement. So, in the worst case,

the attacker still has good options available. Alternatively, in the best case scenario

to playing Wait, the attacker may mine a block at the next time step and thus further

close the deficit to publishing block 1 in a timeserving manner, which seems favorable.

Extending this reasoning, from (A, xH, 2A), π plays Wait until either the attacker can

publish block 1 in a timeserving manner or there is finally some urgency to publishing

blocks {x+ 2, x+ 3}.

• (A, xH,A,H) for x ∈ {2, ..., i}: We know that waiting is optimal at this state since it is

the only timeserving action; the attacker is at a deficit of x blocks to publish block 1 in a

timeserving manner and a deficit of 1 block to publish block x+2 in a timeserving man-

ner. Note that the capitulation from (A, xH,A,H) to B1,1 eliminates the possibility of

ever publishing block 1. Now, to motivate the choice to capitulate from (A, xH,A,H)

to B1,1, consider a scenario where the attacker, starting from (A, xH,A,H), eventually

makes up for the deficit to publish block x+2 in a timeserving manner. At this point,

the attacker can certainly take some publish action which publishes block x + 2. Or,

the attacker might be enticed to again try to make up for the deficit to publish block

1, which will be at an x−1 block deficit at this point. However, if they continue to try

for block 1, there is the chance that they may, once again, lose their ability to publish

block x+ 2. Therefore, it seems like the safe action is to publish block x+ 2. Then, it

is clear that, from (A, xH,A,H) the attacker forgets about block 1 in any case, so that

it is safe to capitulate to B1,1. Put otherwise, our intuition suggests that the deficit

to publishing block x+2 in a timeserving manner already gives an attacker enough to
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worry about without also having to worry about publishing block 1 in a timeserving

manner, such that an attacker would prefer to just forget about block 1, which is the

effect of capitulating from (A, xH,A,H) to B1,1.

• (A, (i+1)H): At this state, if the attacker’s hope is to eventually publish block 1 in a

timeserving manner, then the attacker is at a deficit of i+1 blocks to do so. For small

deficits, it seems reasonable to be optimistic about the possibility of making up for this

deficit. However, when the deficit is large, it is less clear that the attacker should be

optimistic about this. Alternatively, even if, by a stroke of luck, the attacker is able to

make up for the deficit and is able to publish block 1 in a timeserving manner at some

point in the future, it is unclear if doing so is in the attacker’s best interest. Consider

that, at this hypothetical state in the future, the attacker would necessarily have a

large stash of unpublished blocks. Then, perhaps the attacker can extract more revenue

from leveraging these unpublished blocks in some way other than using them to publish

block 1. So, since publishing block 1 in a timeserving manner is both improbable and

potentially counterproductive, it seems reasonable to capitulate at this state, which is

precisely what π does. In other words, strategy π = i-Deficit Tolerance tolerates

a deficit of at most i blocks before capitulating to B0.

As we provided intuition about strategies belonging to n-Deficit Tolerance we main-

tained i ∈ N+ as a variable. For specific values of i, this intuition may be questionable. For

example, perhaps 50-Deficit Tolerance is too optimistic about publishing block 1 at

(A, 50H). Or, perhaps 1-Deficit Tolerance is not optimistic enough about publishing

block 1 at (A, 2H). Indeed, over our range of interest 0.3080 ≤ α ≤ 0.3247,

Rev(1-Deficit Tolerance, α) = Rev(SM, α)

< Rev(NSM, α)
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= Rev(2-Deficit Tolerance, α)

where the first line is due to Observation 4.3, the second line is due to [3, 4], and the finality

line is due to Observation 4.4.

This is all to demonstrate that, a priori, it is unclear which strategy in the n-Deficit

Tolerance family of strategies outperforms Honest at the lowest α, if such a strategy

exists. Put otherwise, we are looking for:5

i∗ = argmin
i∈N+

{min{α ∈ [0, 1] | Rev(i-Deficit Tolerance, α) > Rev(Honest, α)}}

Finding i∗ gives us the tightest upper bound on αPoS that the n-Deficit Tolerance family

of strategies permits. Unfortunately, we are not able to find a closed-form equation from i

to min{α ∈ [0, 1] | Rev(i-Deficit-Tolerance, α) > Rev(Honest, α)}, but we are able

to compute this quantity for a few selected i, shown in Table 1. This table shows a clear

trend, where the strategy belonging to n-Deficit Tolerance that outperforms Honest

at the lowest α appears to be 4-Deficit Tolerance, which outperforms Honest for all

α > 0.3235. Therefore, we immediately conclude that αPoS ≤ 0.3235.

In summary, within this section we have devised a strategy named 4-Deficit Toler-

ance that improves the upper bound to αPoS and is founded on intuition that will guide the

proofs to follow.

5The outermost argmini∈N+
{·} operation is chosen arbitrarily and may be replaced with argmaxi∈N+

{·}
or any other operation which returns a single element from a set. Although, the case could be made that
indeed argmini∈N+

{·} is the right choice because this would, in some sense, return the simplest strategy
satisfying the conditions, which may be desirable.
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Strategy π min{α ∈ [0, 1] | Rev(π, α) > Rev(Honest, α)}
1-Deficit Tolerance (SM) 0.333333
2-Deficit Tolerance (NSM) 0.324718
3-Deficit Tolerance 0.323577
4-Deficit Tolerance 0.323489
5-Deficit Tolerance 0.323534
6-Deficit Tolerance 0.323572

Table 1: Members of the n-Deficit Tolerance family of strategies and the smallest α for
which they outperform Honest. The first two rows are due to [3] and [4] respectively. The
remaining rows are due to Appendix D.

Figure 6: This figure plots the revenue of Honest and several strategies in
n-Deficit Tolerance as a function of α to allow for comparison between them. The
revenues of the selected strategies from n-Deficit Tolerance are derived in Appendix D.
Note that, aside from the information which is highlighted in Table 1 such a comparison is
not immediately useful towards the research question of this paper and is only a point of
curiosity.
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5 Structured Strategies

Now that we have improved the upper bound to αPoS, we will try to likewise improve the lower

bound to αPoS. Towards this goal, we will first reduce the strategy space. Note that [4] has

already proven that, without loss of generality, an optimal strategy is timeserving, orderly,

LPM, trimmed, opportunistic, checkpoint recurrent, and positive recurrent (Theorem B.1).

This allows us to rule out many strategies from consideration. Here, we will introduce three

additional properties that an optimal strategy exhibits so that we can rule out even more

strategies from consideration. For each property we introduce, we will first offer intuition as

to why we expect an optimal strategy to exhibit this property, then prove this formally in

Appendix E. The main result of this section is Theorem 5.10, which states that without loss

of generality, an optimal strategy is structured (Definition 5.9).

5.1 Elevated

Some intuition offered in our discussion of strategies in n-Deficit Tolerance claimed

that at a state (A, xH, 2A) for some x ∈ N+ \ {1}, an optimal strategy would not take

action PublishPath({x + 2, x + 3}, x), where this action publishes two attacker blocks to

the longest path and forks one honest miner block from the longest path. The reasoning

behind this intuition was that, if the attacker instead played Wait at this state, then, over

the randomness in which miner mines the next block,

• in the worst case scenario (that is, the honest miner mines and publishes the next

block), the attacker will still be able to publish the same chain of blocks, except on

block x + 1 this time, to again insert two attacker blocks into the longest path and

remove one honest miner block from the longest path,

• and, in the best case scenario (that is, the attacker mines the next block), the attacker

will have an additional unpublished block to leverage while the block tree remains
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unchanged.

To motivate the language we will use hereon, consider that the suggested action in the

worst case scenario discussed by the first bullet point essentially elevates the chain of blocks

{x + 2, x + 3} in publishing this chain on block x + 1 instead of x, where h(x + 1) > h(x).

Actually, we will argue that all of our intuition about this state boils down to the fact that

the chain of blocks {x + 2, x + 3} which action PublishPath({x + 2, x + 3}, x) attempts to

publish at this state can be elevated in the sense that this chain of blocks may instead be

published on a block with height > h(x). That is, the intuition we have built up suggests

that if the chain of blocks the attacker is considering publishing can be elevated, the attacker

can instead wait until the next round, where they may potentially mine a block to reach a

more favorable state, without incurring any real risk or lost revenue. Then, it seems like the

attacker should only take actions where the published chain of blocks is already elevated.

This intuition is visualized in Figure 7. We now formalize this line of thought:

Definition 5.1 (Elevated). Let π be a strategy and let B be any state. A valid action

PublishSet(V ′, E ′) is said to be elevated with respect to B and π if

• for u such that minV ′ → u ∈ E ′, then ̸ ∃b ∈ V (B) such that u ∈ A(b) \ {b} and

b < minV ′. That is, regardless of the path that minV ′ is published on, within that

path, minV ′ must be published on the block of maximal height on which it can be

validly published.

• or, for subsequent state B′ which follows taking action PublishSet(V ′, E ′) at B, maxV ′

does not reach finality with respect to π at state B′.

Strategy π is said to be elevated if, when played against Honest, with probability 1, at

all states B, strategy π takes an elevated action with respect to B and π. Furthermore,

valid action PublishSet(V ′, E ′) is said to be strongly elevated with respect to B and π if it
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(a) State (A, 3H, 2A). (b) Result of playing PublishPath({5, 6}, 3)
at state (A, 3H, 2A). This is not an elevated
action at this state since the chain of blocks
{5, 6} may be elevated to instead be pub-
lished on block 4, where h(4) > h(3).

(c) Result of playing Wait at (A, 3H, 2A),
the honest miner mining and publish-
ing block 7, then the attacker playing
PublishPath({5, 6}, 4). This is an elevated
action at this state since the chain of blocks
{5, 6} may not be published on block 7.

(d) Result of playing Wait at (A, 3H, 2A),
then the attacker mining block 7 and play-
ing PublishPath({1, 5, 6, 7}, 0). This is an el-
evated action at this state since the chain of
blocks {1, 5, 6, 7} may not be published on
any block in {2, 3, 4}.

Figure 7: To gain intuition as to why we expect an optimal strategy to only take actions
which are elevated, consider the state shown in Figure 7a, which is state (A, 3H, 2A). Then,
Figure 7b shows the result of an action which is not elevated at state (A, 3H, 2A). If the
attacker instead chose to play Wait at state (A, 3H, 2A), then in the next round, either an
action is available which yields the state shown in Figure 7c or an action is available which
yields the state shown in Figure 7d. While the state in Figure 7c seems similar to the state
in Figure 7b, the state in Figure 7d seems much more favorable than the state in Figure 7b.
So, in the worse case scenario, it seems that the attacker is just as well off when they play
Wait at (A, 3H, 2A) as when they take a non-elevated action at (A, 3H, 2A). But, in the
best case, it seems that the attacker is strictly better off when they play Wait at (A, 3H, 2A)
compared to when they take a non-elevated action at (A, 3H, 2A).
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satisfies the first bullet point. Strategy π is said to be strongly elevated if, when played against

Honest, with probability 1, at all states B, strategy π takes a strongly elevated action with

respect to B and π.

In Definition 5.1, the second bullet is a detail needed to complete the proof whereas the

first bullet captures the ideas discussed above. Namely, if such a block b as described in the

first bullet did exist, then the action PublishSet(V ′, E ′) cannot be elevated by our discussion

above since the chain of blocks that the attacker is trying to publish may instead be published

on this block b. Note that, under our definition, the actionWait is always elevated. Also note

that, under our definition, Honest is elevated since all blocks are published on the longest

chain such that there cannot exist an alternative block at a greater height that the miner

can instead publish on. Now, Theorem 5.2 highlights the primary value to introducing the

idea of elevated actions and strategies which is that, later on when we try to derive optimal

actions at states, we will only need to consider actions which are elevated.

Theorem 5.2 (Elevated). At any mining strength α, there exists an optimal strategy which is

timeserving, orderly, LPM, trimmed, opportunistic, checkpoint recurrent, positive recurrent,

and elevated.

5.2 Patient

Another line of intuition in our discussion of strategies in n-Deficit Tolerance claimed

that at a state (A, xH, 2A) for some x ∈ N+ \{1}, an optimal strategy would not take action

PublishPath({x + 2, x + 3}, x + 1), where this action publishes two attacker blocks to the

longest path but doesn’t fork any honest miner blocks to the longest path. The reasoning

behind this intuition was that, if the attacker instead played Wait at this state, then, over

the randomness in which miner mines the next block,

• in the worst case scenario (that is, the honest miner mines and publishes the next
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block), the attacker will still be able to take the same action, except this time insert

two attacker blocks into the longest path and remove one honest miner block from the

longest path, which seems strictly better

• and, in the best case scenario (that is, the attacker mines the next block), the attacker

will have an additional unpublished block to leverage while the block tree remains

unchanged.

Since even the worst case scenario seems strictly better than taking action PublishPath({x+

2, x + 3}, x + 1) at (A, xH, 2A), it seems like an attacker considering this action should

instead be patient and play Wait. The exact reason why it seems to be better to be patient

is because the action PublishPath({x + 2, x + 3}, x + 1) at (A, xH, 2A) publishes one more

block than necessary to establish a unique longest chain, such that the excess block can, in

the worst case scenario, be used to fork an honest miner block from the longest path, while

the original action PublishPath({x+ 2, x+ 3}, x+ 1) does not fork any honest miner blocks

from the longest path.

More generally, a lead of at least two blocks over the honest miner somewhere in an

execution of the game seems extremely valuable to the attacker for the reason that the

attacker can publish the blocks which constitute the lead with certainty even if they are

patient and wait a few rounds. In our example, at state (A, xH, 2A), the attacker had a lead

of two blocks over blocks > x + 1. Now consider that, for a lead of k ∈ N+ \ {1} blocks

somewhere in an execution of the game, the attacker can wait at least k − 1 rounds and

still be able to publish the blocks which constitute the lead with certainty, since the honest

miner can mine at most k − 1 blocks in this time but the attacker can still fork a chain of

this height. Even better, there is a chance the attacker mined some blocks while waiting

these k − 1 rounds, in which case the attacker can be patient even longer.

As a possible point of confusion, it may appear to some readers that the net gain is the
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same whether the attacker is patient or not. Such readers may point to the case of having

a lead of k blocks, waiting for the honest miner to mine k − 1 blocks, then publishing k

blocks to fork these honest miner blocks from the longest path, and claim that, in this case,

the attacker has published the same amount of blocks as if they just published straightaway

when they had a lead of k. While this is true, the fact that the attacker removes k−1 honest

blocks from the longest path makes the act of being patient strictly better than publishing

straightaway, since it means that the longest path grows slower and the honest miner wastes

these k − 1 blocks.

To make explicit this idea of slowing the growth of the longest path and wasting the

honest miner’s blocks more, consider a simplified version of the game where there will be T

rounds in total with the attacker mining on exactly αT rounds and the honest miner mining

on exactly (1 − α)T rounds.6 Suppose that, at the outset of the game, the attacker mines

k ∈ N+ \ {1} consecutive blocks then the honest miner mines k − 1 consecutive blocks. If

the attacker had published their blocks at the time they had a lead of k blocks, then after

the honest miner mines their k− 1 blocks, the longest path would be 2k− 1 blocks in length

with only a little more than half of these blocks owned by the attacker. Furthermore, over

the remainder of the game, the attacker will mine αT − k more blocks and the honest miner

will mine (1 − α)T − (k − 1) more blocks. If instead, the attack was patient and let the

honest miner publish k − 1 blocks to the longest path only to immediately fork them from

the longest path afterwards, then the longest path at the end of this sequence would be k

blocks in length with all of these blocks owned by the attacker. Just the same as before,

over the remainder of the game, the attacker will mine αT − k more blocks and the honest

miner will mine (1 − α)T − (k − 1) more blocks. Therefore, in this example, this idea of

being patient and waiting to cancel out honest miner blocks slows the growth of the longest

path and maintains a larger proportion of attacker blocks in the longest path while keeping

6Assume that both αT and (1− α)T are natural numbers.
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the number of blocks each miner will mine over the remainder of the game unchanged.

In summary, the intuition we have built up suggests that if the chain of blocks the attacker

is considering publishing is in excess of that needed to establish a unique longest chain, then

the attacker can instead be patient and play Wait so that they may use the excess block(s)

at some later time to fork honest miner blocks from the longest path, where it is desirable to

fork honest miner blocks from the longest path since it slows the growth of the longest path

and maintains a larger proportion of attacker blocks in the longest path. Then, it seems like

the attacker should only take actions which are already patient. This intuition is visualized

in Figure 8 and Figure 9. We now formalize this line of thought:

Definition 5.3 (Patient). Let π be a strategy and let B be any state. A valid action

PublishSet(V ′, E ′) is said to be patient with respect to B and π if, for subsequent state B′

which follows taking action PublishSet(V ′, E ′) at B

• h(C(B′))− h(C(B)) = 1. That is, the action PublishSet(V ′, E ′) increases the height of

the longest chain by exactly one.

• or, maxV ′ does not reach finality with respect to π at state B′

Strategy π is said to be patient if, when played against Honest, with probability 1, at all

states B, strategy π takes a patient action with respect to B and π. Furthermore, valid action

PublishSet(V ′, E ′) is said to be strongly patient with respect to B and π if it satisfies the first

bullet point. Strategy π is said to be strongly patient if, when played against Honest, with

probability 1, at all states B, strategy π takes a strongly patient action with respect to B and

π.

While Definition 5.3 is intentionally written so that it may be applied to any valid action,

we can simplify the definition if we restrict our focus to timeserving actions:

Definition 5.4 (Patient). Let π be a strategy and let B be any state. A valid, timeserving

action PublishPath(Q, v) is said to be patient with respect to B and π if
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(a) State (A, 3H, 2A). (b) Result of playing PublishPath({5, 6}, 4)
at state (A, 3H, 2A). This is not a patient ac-
tion at this state since it increases the height
of the longest chain by two.

(c) Result of playing Wait at (A, 3H, 2A),
the honest miner mining and publish-
ing block 7, then the attacker playing
PublishPath({5, 6}, 4). This is an patient ac-
tion at this state since it increases the height
of the longest chain by exactly one.

(d) Result of playing Wait at (A, 3H, 2A)
then the attacker mining block 7 and play-
ing PublishPath({1, 5, 6, 7}, 0). This is a pa-
tient action at this state since it increases the
height of the longest chain by exactly one.

Figure 8: To gain intuition as to why we expect an optimal strategy to only take actions
which are patient, consider the state shown in Figure 8a, which is state (A, 3H, 2A). Then,
Figure 8b shows the result of an action which is not patient at state (A, 3H, 2A). If the
attacker instead chose to play Wait at state (A, 3H, 2A), then in the next round, either an
action is available which yields the state shown in Figure 8c or an action is available which
yields the state shown in Figure 8d. While the state in Figure 8c initially seems similar to the
state in Figure 8b, since it additionally forks an honest miner block from the longest path, it
is in fact strictly better. Also, the state shown in Figure 8d seems much more favorable than
the state in Figure 8b. So, in either case, it seems that the attacker is better off when they
play Wait at (A, 3H, 2A) compared when they take a non-patient action at (A, 3H, 2A).
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(a) State which may occur when the mining sequence is
A,A,A,A,H,H,H and the attacker does not take patient actions.

(b) State which may occur when the mining sequence is
A,A,A,A,H,H,H and the attacker takes patient actions.

Figure 9: Suppose that the initial mining sequence up to round 7 is A,A,A,A,H,H,H.
That is, the attacker mines the first four blocks then the honest miner mines the next three
blocks. Figure 9a shows a state which may result from this sequence when the attacker does
not take patient actions. Here, the longest path is fairly long and the attacker only owns
about half the blocks in the longest path. Compare this to Figure 9b, which shows a state
which may result from this sequence when the attacker takes only patient actions. Here,
the longest path is much shorter than in Figure 9a and the attacker owns all blocks in the
longest path. Therefore, in this case, taking patient actions seems much better.
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• h(v) + |Q| = h(C(B)) + 1. That is, the action PublishPath(Q, v) increases the height

of the longest chain by exactly one.

• or, for subsequent state B′ which follows taking action PublishPath(Q, v) at B, maxQ

does not reach finality with respect to π at state B′.

Timeserving strategy π is said to be patient if, when played against Honest, with probability

1, at all states B, strategy π takes a patient action with respect to B and π. Furthermore,

valid, timeserving action PublishPath(Q, v) is said to be strongly patient with respect to B

and π if it satisfies the first bullet point. Timeserving strategy π is said to be strongly patient

if, when played against Honest, with probability 1, at all states B, strategy π takes a strongly

patient action with respect to B and π.

Since Theorem B.1 states that it is without loss of generality to consider strategies which

are timeserving, we will primarily work with Definition 5.4 rather than Definition 5.3.

To understand Definition 5.4, first note that in this definition, the second bullet is a

detail needed to complete the proof whereas the first bullet captures the ideas discussed

above. Let’s rephrase the first bullet of Definition 5.4 a few different ways to crystallize an

understanding of patient strategies. Another way of stating the first bullet point is that the

action PublishPath(Q, v) is such that Q contains just enough blocks to establish a unique

longest chain and not a single block more. In other words, if you picture this action visually,

it will be such that every block in Q cancels out some block in the longest path except for

maxQ, which has nothing to cancel out because it reaches a new height of h(C(B)) + 1,

which by definition, no block in B can reside at. Visually, an action that is not patient

might have some blocks in Q cancel out some blocks in the longest path, but at the same

time have several blocks in Q reach unique heights and thus not reap any of the reward to

canceling out a block. In the language used above, the blocks that do not cancel anything

and are not maxQ would be the excess which we would rather leverage in some meaningful
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way than publish here.

Note that, under our definition, the action Wait is always patient. Also note that, under

our definition, Honest is patient since it only ever publishes one block on the longest chain,

which clearly establishes a unique longest chain at one greater height. Now, Theorem 5.5

highlights the primary value to introducing the idea of patient actions and strategies which

is that, later on when we try to derive optimal actions at states, we will only need to consider

actions which are patient.

Theorem 5.5 (Patient). At any mining strength α, there exists an optimal strategy which is

timeserving, orderly, LPM, trimmed, opportunistic, checkpoint recurrent, positive recurrent,

elevated, and patient.

5.3 Thrifty

In this section, we will introduce one final property that an optimal strategy exhibits. Con-

sider that a strategy takes a publish action where the published blocks reach finality. Then,

by the definition of finality (Definition B.19), these just-published blocks will never be re-

moved from the longest path.

Now, consider any unpublished block b owned by the attacker which was mined on an

earlier round than some block which has reached finality. It is clear that any action which

inserts this block b into the longest path must necessarily fork some block which has reached

finality from the longest path. But, this contradicts the definition of finality, and so this

unpublished block b will never enter the longest path such that it can essentially be forgot-

ten. Therefore, following an action where the published blocks reach finality, the attacker

capitulates state to forget all unpublished blocks which were mined on an earlier round than

the minimum block which reaches finality.

So far, we have shown that when the attacker takes an action where the published blocks
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reach finality, some unpublished blocks may subsequently be deleted from the game state.

Therefore, when the attacker considers such an action, it is reasonable to believe that they

should be as thrifty as possible in making sure that there is not some unpublished block that

would otherwise be forgotten that they could instead add to their current publish action for

greater reward.

That is, suppose that there is some unpublished block that would otherwise be forgotten

that the attacker could instead add to their current publish action for greater reward. Then,

it almost seems wasteful not to augment the publish action to include this additional block.

In other words, the current publish action which does not include this block must not be

thrifty.

In summary, the intuition we have built up suggests that an attacker must be thrifty,

which means that, whenever the attacker is considering some publish action where the pub-

lished blocks reach finality, there must not be any unpublished block that would otherwise

be forgotten that could instead be added to the publish action for greater reward. This

intuition is visualized in Figure 10. We now formalize this line of thought:

Definition 5.6 (Thrifty). Let π be a strategy and let B be any state. A valid action

PublishSet(V ′, E ′) is said to be thrifty with respect to B and π if, for subsequent state B′

which follows taking action PublishSet(V ′, E ′) at B

• there does not exist V +, E+ such that

– V + ̸= ∅

– V + ⊆
(
UA(B′) ∩ (0,minV ′)

)
– PublishSet(V ′∪V +, E ′∪E+) is a valid checkpoint recurrent action at B that yields

state B+

– |A(C(B′)) ∩ TA(B
′)| < |A(C(B+)) ∩ TA(B

+)|
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(a) State (A, 2H,A,H,A,H,A).

(b) Result of playing PublishPath({6, 8}, 5) at (A, 2H,A,H,A,H,A). Since blocks
6 and 8 become checkpoints, for any checkpoint recurrent strategy, blocks 6 and 8
must reach finality. Then, since block 4 could have additionally been published for
greater reward, this action cannot be thrifty with respect to any checkpoint recurrent
strategy.

(c) Result of playing PublishPath({4, 6, 8}, 3) at (A, 2H,A,H,A,H,A). No unpub-
lished block can be added to this publish action for greater reward. In particular,
there is no way to publish block 1 in a timeserving manner at the current state, and
so the reward to any action which publishes block 1 is zero, which is less than the
reward of action PublishPath({4, 6, 8}, 3). Therefore this action is thrifty.

Figure 10: To gain intuition as to why we expect an optimal strategy to only take actions
which are thrifty, first consider state (A, 2H,A,H,A,H,A), shown in Figure 10a. Then com-
pare the state shown in Figure 10b (which is the result of an action at (A, 2H,A,H,A,H,A)
which is not thrifty with respect to checkpoint recurrent strategies) to the state shown in
Figure 10c (which is the result of an action at (A, 2H,A,H,A,H,A) which is thrifty for any
strategy). Put simply, it seems wasteful to publish blocks 6 and 8 at (A, 2H,A,H,A,H,A)
but not block 4.
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• or, maxV ′ does not reach finality with respect to π at state B′

Strategy π is said to be thrifty if, when played against Honest, with probability 1, at all

states B, strategy π takes a thrifty action with respect to B and π. Furthermore, valid action

PublishSet(V ′, E ′) is said to be strongly thrifty with respect to B and π if it satisfies the first

bullet point. Strategy π is said to be strongly thrifty if, when played against Honest, with

probability 1, at all states B, strategy π takes a strongly thrifty action with respect to B and

π.

While Definition 5.6 is intentionally written so that it may be applied to any valid action,

we can simplify the definition if we restrict our focus to timeserving actions:

Definition 5.7 (Thrifty). Let π be a strategy and let B be any state. A valid, timeserving

action PublishPath(Q, v) is said to be thrifty with respect to B and π if, for subsequent state

B′ which follows taking action PublishPath(Q, v) at B

• there does not exist Q+, v+ such that

– Q ⊂ Q+

– Q+ \Q ⊆ (UA(B′) ∩ (0,minQ))

– PublishPath(Q+, v+) is a valid checkpoint recurrent action at B that yields state

B+

– |A(C(B′)) ∩ TA(B
′)| < |A(C(B+)) ∩ TA(B

+)|

• or, maxQ does not reach finality with respect to π at state B′

Timeserving strategy π is said to be thrifty if, when played against Honest, with probability

1, at all states B, strategy π takes a thrifty action with respect to B and π. Furthermore,

valid, timeserving action PublishPath(Q, v) is said to be strongly thrifty with respect to B and

π if it satisfies the first bullet point. Timeserving strategy π is said to be strongly thrifty if,
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when played against Honest, with probability 1, at all states B, strategy π takes a strongly

thrifty action with respect to B and π.

Since Theorem B.1 states that it is without loss of generality to consider strategies which

are timeserving, we will primarily work with Definition 5.7 rather than Definition 5.6.

To understand Definition 5.4, first note that in this definition, the second bullet addresses

the assumption that the published blocks reach finality whereas the first bullet captures the

idea that no additional blocks may be added to the set of blocks published in a thrifty action.

To unpack the first bullet point, first suppose that some Q+, v+ exist. In the language used

above, UA(B′) ∩ (0,minQ) is precisely the set of unpublished blocks that would otherwise

be forgotten by the action PublishPath(Q, v). Then, Q+ \ Q is some non-empty subset of

these unpublished blocks that would otherwise be forgotten by the action PublishPath(Q, v).

Finally, the condition that |A(C(B′)) ∩ TA(B
′)| < |A(C(B+)) ∩ TA(B

+)| tells us that the

augmented publish action PublishPath(Q+, v+), which includes some number of blocks that

would otherwise be forgotten, inserts more blocks into the longest path than the original

action PublishPath(Q, v). In other words, this last condition expresses the fact that the

augmented publish action PublishPath(Q+, v+) earns greater reward than the original action

PublishPath(Q, v). Altogether, we can see that the existence of such Q+, v+ witnesses the

fact that action PublishPath(Q, v) is not be thrifty. Therefore, for a thrifty action, such

Q+, v+ must not exist, which is exactly what is stated by the first bullet.

Note that, under our definition, the action Wait is always thrifty. Also note that, under

our definition, Honest is thrifty since it never has more than one unpublished block at

a time. Now, Theorem 5.8 highlights the primary value to introducing the idea of thrifty

actions and strategies which is that, later on when we try to derive optimal actions at states,

we will only need to consider actions which are thrifty.

Theorem 5.8 (Thrifty). At any mining strength α, there exists an optimal strategy which is

timeserving, orderly, LPM, trimmed, opportunistic, checkpoint recurrent, positive recurrent,
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elevated, patient, and thrifty.

5.4 Structured

Let’s abbreviate how we refer to a strategy which exhibits all properties thus established:

Definition 5.9 (Structured). Let π be a strategy and B be any state. A valid action

PublishSet(V ′, E ′) is said to be structured with respect to B and π if it is

• timeserving with respect to B and π, (Definition B.10)

• orderly with respect to B and π, (Definition B.13)

• longest path mining with respect to B and π, (Definition B.16)

• trimmed with respect to B and π, (Definition B.18)

• opportunistic with respect to B and π, (Definition B.20)

• checkpoint recurrent with respect to B and π, (Definition B.22)

• positive recurrent with respect to B and π, (Definition B.3)

• elevated with respect to B and π, (Definition 5.1)

• patient with respect to B and π, (Definition 5.4)

• thrifty with respect to B and π, (Definition 5.7)

Strategy π is said to be structured if, when playing against Honest, with probability 1, at

all states B, strategy π takes a structured action with respect to B and π. Furthermore,

valid action PublishSet(V ′, E ′) is said to be strongly structured with respect to B and π if

it structured and additionally strongly elevated, strongly patient, and strongly thrifty with

respect to B and π. Strategy π is said to be strongly structured if, when played against
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Honest, with probability 1, at all states B, strategy π takes a strongly structured action

with respect to B and π.

The following theorem, which is just a rephrasing of Theorem 5.8 using this new definition,

is the main result of this section:

Theorem 5.10 (Structured). At any mining strength α, there exists an optimal strategy

which is structured.

Since structured strategies combine numerous properties, it is possible that the interplay

between these properties yields interesting and unexpected results. Indeed, one such result

is the following lemma, the proof of which is deferred to Appendix E.4:

Lemma 5.11 (minQ = v + 1). Consider that a structured strategy π takes the action

PublishPath(Q, v) at state B where maxQ reaches finality with respect to π. Then, if v ∈

TH(B) or v + 1 ∈ TA(B), we have minQ = v + 1.

5.5 Non-Singleton

Before we conclude this section, we will define one last property a strategy may exhibit.

This property is not included in our definition of a structured strategy because there may

be some mining strengths α for which no optimal strategy exhibits this property.

To motivate this last property, suppose that the attacker has mining strength α and that

there is some state where an optimal strategy for this mining strength publishes one block

and capitulates to B0. Then, this supposed optimal strategy seems to behave very similarly

to Honest at this state and so we would not expect it to outperform Honest at this state.

But, in the case that α > αPoS, this should be met with skepticism, since the definition of

αPoS implies that strategic manipulation is possible and that Honest cannot be optimal for

this mining strength. So, if α > αPoS, we would expect an optimal strategy to do something

64



more clever than Honest at this state to extract greater revenue than Honest at this state.

In other words, we would expect an optimal strategy for mining strength α > αPoS to do

something more clever than publishing a singleton set and capitulating to B0 at this state.

We now formalize this line of thought:

Definition 5.12 (Non-Singleton). Let π be a strategy and let B be any state. A valid action

PublishSet(V ′, E ′) is said to be non-singleton with respect to B and π if

• |V ′| ≠ 1

• or, for subsequent state B′ which follows taking action PublishSet(V ′, E ′) at B, maxV ′

does not reach finality with respect to π at state B′.

Strategy π is said to be non-singleton if, when played against Honest, with probability 1, at

all states B, strategy π takes a non-singleton action with respect to B and π. Furthermore,

valid action PublishSet(V ′, E ′) is said to be strongly non-singleton with respect to B and π if

it satisfies the first bullet point. Strategy π is said to be strongly non-singleton if, when played

against Honest, with probability 1, at all states B, strategy π takes a strongly non-singleton

action with respect to B and π.

While Definition 5.12 is intentionally written so that it may be applied to any valid ac-

tion, it is easy to translate the definition to make it applicable to actions written using

PublishPath(·, ·) or Publish(·, ·) notation. In short, an action PublishPath(Q, v) is non-

singleton if |Q| ̸= 1 or the published set does not reach finality. Likewise, an action

Publish(k, u) is non-singleton if k ̸= 1 or the published set does not reach finality.

Note that, under our definition, the action Wait is always non-singleton. However, unlike

previous properties, under our definition, Honest is not non-singleton because at B1,0, it

publishes a singleton set which reaches finality. Therefore, if Honest is the unique optimal

strategy at mining strength α, as we suspect to be the case for small mining strengths, then
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no optimal strategy at mining strength α will be non-singleton. Indeed, this is precisely

the reason that we do not include this property in our definition of a structured strategy.

However, Theorem 5.13 shows that there is at least some range of mining strengths over

which an optimal strategy is non-singleton. So, if we are ever looking for an optimal strategy

over this range of mining strengths, then we will only need to consider actions which are

non-singleton.

Theorem 5.13 (Non-Singleton). At any mining strength α > αPoS, there exists an optimal

strategy which is timeserving, orderly, LPM, trimmed, opportunistic, checkpoint recurrent,

positive recurrent, elevated, patient, thrifty, and non-singleton.
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6 Upper Bounding the Value of a State

While deriving their lower bound on αPoS, Ferreira and Weinberg [4] prove an incredibly

helpful lemma which allows them to upper bound the value Vα(B) for any mining strength α

and any state B. This is included in Appendix B as Lemma B.27. The intuition behind the

lemma is that it decides some height c ∈ [h(C(B))] then separately considers the maximum

reward over blocks that cannot reach height greater than c and blocks that can reach height

at least c + 1. Intuitively, it makes sense that this should (loosely) upper bound Vα(B)

because, by separately considering the maximum reward over these disjoint sets of blocks,

we are ignoring the fact that there may not exist a strategy which simultaneously achieves

these rewards. The following example presents a state where an application of Lemma B.27

seems particularly loose:

Example 6.1. Let α(1−α)2

(1−2α)2
≤ 2. Consider state B = (A, 2H, 2A). Towards, Lemma B.27, let

c = 2 = h(C(B)). Then, the c-capitulation of B is B2,0 since only blocks 4 and 5 can reach

heights greater than 2. Note, Vα(B2,0) = (2+ α
1−2α

)(1−λ) by Corollary B.33, rλ(B0, B2,0) = 0

since no blocks are published in B2,0, and rλ(B0, B) = −2λ because two honest blocks are

published in (A, 2H, 2A). Furthermore, note that at state B the attacker may take action

PublishPath(TA(B), 0) to own all blocks in the longest path. So, for τ the first time from B

the attacker capitulates to B0, the best known upper bound to Pr[Hi(Xτ ) ∈ TA(Xτ ) | X0 = B]

for i ∈ {1, 2} is Pr[Hi(Xτ ) ∈ TA(Xτ ) | X0 = B] ≤ 1. Therefore, Lemma B.27 gives us

Vα(B) ≤ (2 + α
1−2α

)(1− λ) + 0 + 2λ+
2∑

i=1

(Pr[Hi(Xτ ) ∈ TA(Xτ ) | X0 = B]− λ)

≤ (2 + α
1−2α

)(1− λ) + 2

In this application of Lemma B.27, the upper bound to Pr[Hi(Xτ ) ∈ TA(Xτ ) | X0 = B]

for i ∈ {1, 2} is due to action PublishPath(TA(B), 0) which is available to the attacker at
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state B and uses blocks 1, 4, and 5. More specifically, if this publish action were taken,

H1(Xτ ) = 1 ∈ TA(Xτ ) and H2(Xτ ) = 4 ∈ TA(Xτ ). On the other hand, for our assumption

of α, the value Vα(B2,0) = (2 + α
1−2α

)(1 − λ) is obtained from state B2,0 when the attacker

selfish mines with blocks 4 and 5. In this case, block 4 will certainly not be published at

height 2 at Xτ ; in fact, if the attacker selfish mines with blocks 4 and 5, heights 1 and 2

in the longest path will certainly be owned by the honest miner at Xτ . So, it seems like

blocks 4 and 5 are being used towards two different purposes when counting the reward over

blocks that cannot reach height greater than c and blocks that can reach height at least

c+1. In particular, 4 is explicitly considered as if it could simultaneously be at height 2 and

height 3 in the longest path at Xτ . But, in actual play, clearly this cannot be possible. In

other words, it seems like this application of Lemma B.27 must be particularly loose because

blocks 4 and 5 are somehow being double counted. Generalizing this example, Lemma B.27

seems to perform poorly at states where the attacker owns blocks that can reach heights

greater than the chosen c; at such states, the application of the lemma inevitably sums both

the reward over selfish mining with these blocks as well as any reward that can be obtained

by using these excess blocks to reach back and change the longest path at heights less than

or equal to c.

Here is another example where an application of Lemma B.27 seems particularly loose:

Example 6.2. Consider any mining strength α and B = (A, xH) for some extremely large

x. Let c = x = h(C(B)).7 Then, the c-capitulation B is B0 since no blocks can currently

reach height greater than x. Note, Vα(B0) = 0 by Lemma B.7, trivially, rλ(B0, B0) = 0, and

rλ(B0, B) = −xλ because x honest blocks are published in (A, xH). At state B, the honest

miner owns the block at every height in the longest path ≤ h(C(B)) such that the attacker

can only own the block at height i ∈ [h(C(B))] if the attacker removes blocks {i+1, ..., x+1}
7Note that there is a more clever choice of c that can be used here but this discussion is for demonstrative

purposes and we are not actually looking for the best obtainable upper bound.
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from the longest path. This in turn requires a timeserving strategy to publish at least

|{i+ 1, ..., x+ 1}|+ 1 = x+ 1− (i+ 1) + 1 + 1 = x− i+ 2

blocks if i ≥ 2 and x blocks if i = 1, where the special case of i = 1 is because the attacker

can leverage block 1 in this case. Then, by a coupling with random walks, the probability that

there exists a time t ≥ 1 where the attacker creates k more blocks than the honest miner

from time 1 to t is at most ( α
1−α

)k by Lemma B.28. Therefore, Lemma B.27 gives us

V(B) ≤ 0 + 0 + xλ+
x∑

i=1

(Pr[Hi(Xτ ) ∈ TA(Xτ ) | X0 = B]− λ)

=
x∑

i=1

Pr[Hi(Xτ ) ∈ TA(Xτ ) | X0 = B]

≤ ( α
1−α

)x +
x∑

i=2

( α
1−α

)x−i+2

The reason we believe Lemma B.27 is particularly loose here is because of the large deficit

that the attacker has to make up for to publish block 1. By how the lemma operates, we need

to consider the possibility that each height in the longest path up to c is later occupied by a

block belonging to the attacker. But, this seems to go against our intuition which suggests

that we should care only about the possibility that the attacker ever publishes block 1. This

intuition comes from the fact that if we decide to play optimally on blocks that can reach

heights greater than c and forget about all other blocks, then block 1 seems like the only

block we could have done better with. So, it seems that we should only consider attacker

blocks that can only reach heights ≤ c rather than considering all heights in the longest path

≤ c. If this were true, as the deficit x increases and it becomes less likely that the attacker

can ever publish block 1 in a timeserving manner, the value of the state should decrease,

and so we would hope that the lemma returns a smaller upper bound. However, the derived
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inequality actually increases as the deficit x increases, and so it is shown that applying

Lemma B.27 to this state clearly goes against our intuition. Generalizing this example, the

lemma seems to perform poorly if there are more blocks in the longest path at heights ≤ c

than there are attacker blocks that can only reach heights ≤ c.

On the other hand, there are some states where Lemma B.27 seems to perform decently.

Roughly inverting the conditions in the examples above where Lemma B.27 seems to per-

form poorly, the states where Lemma B.27 seems to performs decently are those where the

attacker does not own blocks that can reach heights greater than the chosen c (that is, the

c-capitulation is B0) and where there are roughly an equal number of blocks in the longest

path at heights ≤ c as there are attacker blocks that can only reach heights ≤ c. Incidentally,

in most cases where Lemma B.27 is applied by Ferreira and Weinberg [4], it is at a state

which meets this criteria. Since one of the goals of this paper is to expand their work by

attempting to derive optimal actions at more states, some of which will necessarily meet the

inauspicious conditions put forward in the above examples, we may hope that we can either

improve Lemma B.27 so that its performance is more uniform across a wide array of states

or replace Lemma B.27 entirely.

What we are actually able to do is prove the following corollary which can be seen as a

rephrasing of Lemma B.27 but in our opinion elucidates the myriad of ways in which we can

bound the value of any state B, as opposed to only being able to select a single parameter

c when applying Lemma B.27. The proof is found in Appendix F.

70



Corollary 6.3 (Upper Bounding the Value of a State). Let B be a state. Additionally, let

N ∈ [h(C(B))]. Then, let (ai)
N
i=0 be a sequence such that a0 = 0 and for all i < j ∈ [N ] we

have ai, aj ∈ [h(C(B))] and ai < aj. Finally, let (B′
i)
N
i=0 be a sequence of states such that

B′
0 = B and for all i ∈ [N ] we have B′

i is the ai-capitulation of B. Then, for any mining

strength α,

Vα(B) ≤ Vα(B′
N) + rλ∗(B0, B

′
N)− rλ∗(B0, B)− aNλ

∗

+
N∑
i=1

ai−ai−1∑
j=1

Pr[Hj(Xτ ) ∈ TA(Xτ ) | X0 = B′
i−1]

where λ∗ = maxπ Rev(π, α) is the optimal revenue at mining strength α, and in each mining

game (Xt)t≥0 which starts at some capitulation B′
i, τ is the first time step the attacker

capitulates to B0 in this mining game when the attacker follows an optimal strategy for

mining strength α.

That is, when applying Corollary 6.3, you choose an increasing sequence of heights in the

longest path, which constitutes the subsequence (ai)
N
i=1 found in the statement. Note that

the sequence of states (B′
i)
N
i=1 immediately follows from the selection of (ai)

N
i=1. For intuition

behind Corollary 6.3 and a preview of its proof, recall that in Lemma B.27 there is the state

B′ which is the c-capitulation of state B and appears in the inequality in the terms Vα(B′)

and rλ(B0, B
′). Now, consider that you can recursively apply Lemma B.27 to this state B′.

In theory, you can recursively apply Lemma B.27 to any state with nonzero height. This

recursive application is precisely what Corollary 6.3 attempts to highlight, where the choice

of (ai)
N
i=1 precisely determines the sequence of recursive application.

Now, let’s show how we may use Corollary 6.3 to easily upper bound complicated states:

Example 6.4. Let α(1−α)2

(1−2α)2
≤ 2. Consider B = (A, 5H,A, 2H, 2A), depicted in Figure 11.
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Select N = 4 and the sequence (0, 1, 5, 6, 7) which satisfies the properties put forth in the

corollary. Then, the sequence of capitulated states is

(B, (4H,A, 2H, 2A), (A, 2H, 2A), (H, 2A), (2A))

Let’s calculate
∑ai−ai−1

j=1 Pr[Hj(Xτ ) ∈ TA(Xτ ) | X0 = B′
i−1] for all such i ∈ [4]:

a1−a0∑
j=1

Pr[Hj(Xτ ) ∈ TA(Xτ ) | X0 = B′
0] =

1∑
j=1

Pr[Hj(Xτ ) ∈ TA(Xτ ) | X0 = B]

= Pr[H1(Xτ ) ∈ TA(Xτ ) | X0 = B]

= ( α
1−α

)4

a2−a1∑
j=1

Pr[Hj(Xτ ) ∈ TA(Xτ ) | X0 = B′
1] =

4∑
j=1

Pr[Hj(Xτ ) ∈ TA(Xτ ) | X0 = (4H,A, 2H, 2A)]

=
4∑

j=1

0

= 0

a3−a2∑
j=1

Pr[Hj(Xτ ) ∈ TA(Xτ ) | X0 = B′
2] =

1∑
j=1

Pr[Hj(Xτ ) ∈ TA(Xτ ) | X0 = (A, 2H, 2A)]

= Pr[H1(Xτ ) ∈ TA(Xτ ) | X0 = (A, 2H, 2A)]

= 1

a4−a3∑
j=1

Pr[Hj(Xτ ) ∈ TA(Xτ ) | X0 = B′
3] =

1∑
j=1

Pr[Hj(Xτ ) ∈ TA(Xτ ) | X0 = (H, 2A)]
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= Pr[H1(Xτ ) ∈ TA(Xτ ) | X0 = (H, 2A)]

= 0

Here, the first result is due to the fact that for the attacker to ever publish block 1, they need

to mine at least 4 more blocks than the honest miner and the probability of this event can be

determined by a coupling with a random walk. The second result is due to the fact that the

blocks Hj(B
′
1) for all j ∈ [4] are checkpoints since the attacker owns no unpublished blocks

over this range at B′
1. Then, since we may assume our attacker is checkpoint recurrent,

blocks Hj(B
′
1) for all j ∈ [4] will never be forked from the longest path. So, the next time

τ the attacker capitulates from B′
1 to B0 the blocks at these heights will still belong to the

honest miner. The third result is already shown as part of Example 6.1, where the idea is

that the attacker may publish all their blocks at (A, 2H, 2A) to fork the longest chain and

own the block in the longest path at height 1 with certainty. The fourth result is due to the

same reasoning as the second result.

Next, Vα(B′
4) = Vα(B2,0) = (2 + α

1−2α
)(1 − λ) by Corollary B.33 and rλ(B0, B

′
4) = 0

since no blocks have yet been published at B′
4 = B2,0. Finally, since the attacker has not

yet published any blocks at B = (A, 5H,A, 2H, 2A), we may just count the number of blocks

published by the honest miner at B to get rλ(B0, B) = −7λ. Therefore, putting this altogether,

by Corollary 6.3, we have

Vα(B) ≤ (2 + α
1−2α

)(1− λ) + 0 + 7λ− 7λ+
(
( α
1−α

)4 + 0 + 1 + 0
)

= (2 + α
1−2α

)(1− λ) + ( α
1−α

)4 + 1

Once again, since the underlying machinery to Corollary 6.3 is exactly Lemma B.27, we

do not expect this bound to be better than that obtained by Lemma B.27, but rather we

hope that the corollary offers a procedural approach to recursively applying Lemma B.27.
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Figure 11: State (A, 5H,A, 2H,A), used in Example 6.4.

As one final attempt to further promote a familiarity with the corollary, we will offer

a visual interpretation. Refer to Figure 12 for the discussion to follow. Consider a state

diagram drawn in the conventional manner for some state B. Place a vertical line at height

0 in the state diagram. Additionally, for each height not exceeding h(C(B)), either place a

vertical line at this height or leave it as is. Now, initialize a running sum to zero and repeat

the following algorithm, starting at the smallest height at which there is a vertical line in

the state diagram:

1. For all heights between the current height and the next height where there is a vertical

line, upper bound the probability of ever owning the block in the longest path at this

height given the current state. Note, this probability is usually upper bounded by

• 1 if the block in the longest path at this height is already owned by the attacker,

• 0 if the block in the longest path at this height is a checkpoint and is owned by

the honest miner,

• 1 if some timeserving action at the current state publishes a block that reaches

this height,

• or, ( α
1−α

)x if the attacker is at a deficit of x blocks to publishing a block that

reaches this height in a timeserving manner (see Figure 5 for a discussion of

deficits and Lemma B.28 for a discussion of this probability),

74



where these items are presented in the order that it is recommended to check them.

Add these upper bounds to the running sum.

2. If there are less than three vertical lines remaining in the current state (counting the

vertical line at the current height), then exit the algorithm. Otherwise, set the current

height to the height of the next vertical line. Then, cover up any blocks to the left of

the current height, as these will no longer be considered. Hereon, refer to the current

state as anything that is not covered up. Finally, repeat step 1.

At this point, the running sum is the quantity
∑N

i=1

∑ai−ai−1

j=1 Pr[Hj(Xτ ) ∈ TA(Xτ ) | X0 =

B′
i−1] that appears in the corollary statement. So, to finish the application, we simply add

the remaining terms, which are Vα(B′
N), rλ(B0, B

′
N), −rλ(B0, B), and −aNλ. Note that B′

N

is the current state when the above algorithm terminates, which may help in the calculation

of Vα(B′
N) and rλ(B0, B

′
N).

Up to this point, we have illustrated how to evaluate the corollary given a sequence

(ai)
N
i=0 which satisfies the stated properties. Now, we will offer some advice for choosing such

a sequence, where we believe that following this advice in an application of the corollary will

result in a good upper bound. However, we will not prove the optimality of sequences chosen

according to this advice. First, aN should always be chosen such that B′
N is a state where

Vα(B′
N) is known. Otherwise, since Corollary 6.3 and Lemma B.27 are the only known tools

for upper bounding the value of a state, we would just have to apply one of these again.

Additionally, over all choices of aN such that B′
N is a state where Vα(B′

N) is known, we should

choose the smallest such aN . Then, there are fewer heights in the longest path for which we

will have to resort to upper bounding a probability, where we expect this upper bound to

be loose in most cases. Next, as regards this looseness, the upper bound to the probability

of ever owning the block in the longest path at a height is tightest when the block currently

in the longest path at this height is a checkpoint owned by the honest miner. In this case,
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Figure 12: This figure, continued on the next page, offers a visual interpretation of Corollary
6.3. At the top of the figure is a legend to help read these annotated state diagrams. The first
state diagram shows our selection of heights at which to place vertical lines. The subsequent
state diagrams show the algorithm which sweeps from the left to the right.
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the probability is exactly 0 since a strategy is assumed to be checkpoint recurrent such that

it will not fork this block and so can never own a block at this height in the longest path.

With this in mind, the sequence should be chosen as to induce capitulated states where the

maximal number of honest miner blocks in the longest path are checkpoints. Sometimes,

this will not be possible, as in the case of (A,H,A,H,A,H) where there are several honest

miner blocks in the longest path but no state capitulation will make one of these honest

miner blocks a checkpoint. Indeed, the advice offered here was followed in constructing the

sequence used in Example 6.4, where B′
4 is the known state B2,0, there is no smaller choice of

a4 which induces a state B′
4 where Vα(B′

4) is known, and five out of the seven honest miner

blocks are checkpoints by the chosen sequence.

In summary, Corollary 6.3 is a useful tool that upper bounds the value Vα(B) of any

given state B, and so we will use it repeatedly in the analysis to follow.
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7 Symmetrical States

In this section, we will prove that if two states B and B′ satisfy some conditions, then a

simple linear equation relates the quantities Vα(B) and Vα(B′). This means that if we can

derive the value of one of these states, say B, then we can immediately obtain the value of

the other state, B′, by plugging the derived value of Vα(B) into the equation and solving for

Vα(B′).

When the value of two states can be related in this way, we will say that there is a

symmetry between these states. In a sense, drawing a symmetry between two states reduces

the state space since it shows that two states are essentially the same from the perspective

of an optimal strategy. That is, drawing a symmetry between two states allows us to focus

our efforts on reasoning about just one of these states, rather than trying to reason about

both of these states independently.

7.1 Symmetry by Blocks Guaranteed to be Published

Recall the strategy 4-Deficit Tolerance at state (A, 4H, 2A), depicted in Figure 13. In

particular, recall that an attacker who uses this strategy will wait until either they make up

for the deficit to publishing block 1 in a timeserving manner or their lead over all blocks > 5

has fell to one. Then, in the case that they make up for the deficit to publishing block 1 in

a timserving manner, they will publish all the blocks that they own on top of the genesis

block. Alternatively, in the case that their lead over all blocks > 5 has fell to one, they will

publish all blocks > 5 that they own on top of block 5. In both cases, from state (A, 4H, 2A)

an attacker using this strategy publishes all blocks > 5 that they own with certainty and,

furthermore, publishes these blocks in the same action.

Now, consider the state (A, 4H, 3A,H), depicted in Figure 14, which may occur sometime

after state (A, 4H, 2A) when the attacker uses 4-Deficit Tolerance. As far as the strategy
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Figure 13: State (A, 4H, 2A).

Figure 14: State (A, 4H, 3A,H).

is concerned, the approach to state (A, 4H, 3A,H) is nearly identical to the approach to state

(A, 4H, 2A). That is, from state (A, 4H, 3A,H), an attacker using 4-Deficit Tolerance

will wait until either they make up for the deficit to publishing block 1 in a timeserving

manner or their lead over all blocks > 5 has fell to one. In the case that they make up for

the deficit to publishing block 1 in a timserving manner, they will publish all the blocks that

they own on top of the genesis block. Alternatively, in the case that their lead over all blocks

> 5 has fell to one, they will publish all blocks > 5 that they own on top of block 5. In both

cases, from state (A, 4H, 3A,H), an attacker using this strategy publishes all blocks > 5 that

they own with certainty and, furthermore, publishes these blocks in the same action.

So, it is shown that an attacker who uses strategy 4-Deficit Tolerance publishes all

blocks > 5 that they own with certainty and, furthermore, publishes these blocks in the

same action from both states (A, 4H, 2A) and (A, 4H, 3A,H). Additionally, the attacker

has the same lead over all blocks > 5 at states (A, 4H, 2A) and (A, 4H, 3A,H). Therefore,

the probability that the attacker makes up for the deficit to publishing block 1 in a time-

serving manner from states (A, 4H, 2A) and (A, 4H, 3A,H) should be equal. Likewise, the

probability that the attacker’s lead over all blocks > 5 falls to one from states (A, 4H, 2A)
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Figure 15: This figure visualizes the claimed symmetry between (A, 4H, 3A,H) and
(A, 4H, 2A) for π = 4-Deficit Tolerance. In particular, the additional constant of 1
on the right-hand side is due to the one additional attacker block and one additional honest
miner block at (A, 4H, 3A,H) compared to (A, 4H, 2A).

and (A, 4H, 3A,H) should be equal. Still more, the expected number of additional blocks

created by the attacker until they take a publish action conditioned on the attacker making

up for the deficit to publishing block 1 in a timeserving manner from states (A, 4H, 2A) and

(A, 4H, 3A,H) should be equal. Finally, the expected number of additional blocks created

by the attacker until they take a publish action conditioned on the attacker’s lead over all

blocks > 5 falling to one from states (A, 4H, 2A) and (A, 4H, 3A,H) should be equal.

Putting this together, without advancing any formal claim, it appears that the state

(A, 4H, 3A,H) is just the state (A, 4H, 2A) with one additional attacker block and one addi-

tional honest miner block, neither of which are particularly important since this additional

attacker block is guaranteed to eventually be published to cancel out this additional honest

miner block. In other words, when comparing the publish action which follows (A, 4H, 3A,H)

to the publish action which follows (A, 4H, 2A), the only difference should be that one ad-

ditional attacker block will be published to cancel out one additional honest miner block,

yielding additional mining game reward (1−λ)(1)−λ(1) = 1 (Definition B.5). So, we would

guess that

V4-Deficit Tolerance
α,λ ((A, 4H, 3A,H)) = V4-Deficit Tolerance

α,λ ((A, 4H, 2A)) + 1

where the plus one is exactly this additional mining game reward. This reasoning is visualized

in Figure 15.
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Let’s recap this line of thought. In this example, we have found a strategy π, two states

B and B′, and a threshold t such that, at each of B and B′, the strategy π guarantees that all

unpublished attacker blocks > t will eventually be published, and, furthermore, guarantees

that these blocks will be published in the same action. Then, the claim was that, as long as

the attacker has the same lead over all blocks > t in each of B and B′, the value function

Vπ
α,λ at these states will be related by the difference in the number of attacker blocks > t.

Now that we have built up sufficient intuition, we will formalize these claims and gener-

alize the observed phenomenon. First, we introduce some notation that allows us to express

states parameterized by the attacker’s lead over the blocks past some threshold:

Definition 7.1 (Collection of States Bx∆). For B = (c1γ
′
1, ..., ct′γ

′
t′) a valid state in abbre-

viated notation with tB = |B|, define Bx∆ for x ∈ Z as the collection of states B′ where

• state B′ occurs during some round t ≥ tB + |x| after one of the miners mines a block

and after the honest miner takes an action,

• up to round tB, B
′ has the same initial mining sequence as B,

• for (γ1, ..., γt) the initial mining sequence up to round t,

t∑
i=tB+1

1γi=A − 1γi=H = x

This can be equivalently stated as

|TA(B
′) \ TA(B)| − |TH(B

′) \ TH(B)| = x

That is, over all blocks > tB, the attacker has mined x more blocks than the honest

miner. In other words, over all blocks > tB, the attacker has a lead of x blocks,
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Figure 16: A few example members of the collection (A, 2H)3∆ (Definition 7.1)

• and, the honest miner has used Honest during all rounds and the attacker has not

yet published any blocks they have mined

It is important to emphasize that Bx∆ is a collection of states, rather than a single state.

Figure 16 shows a few example members of the collection (A, 2H)3∆. Now, for the main

result of this subsection, the proof of which is deferred to Appendix G.1:

Theorem 7.2 (Symmetry by Blocks Guaranteed to be Published). Let B = (c1γ
′
1, ..., ct′γ

′
t′)

be a valid state in abbreviated notation with tB = |B| and h(C(B))-capitulation B0. Ad-

ditionally, let x ∈ N+ and let B′, B′′ ∈ Bx∆ be states such that tB + 1 ∈ TA(B
′) and

tB+1 ∈ TA(B
′′). Finally, for each of state B′ and B′′, let there be an optimal, checkpoint re-

current, positive recurrent strategy for mining strength α that, with certainty, from this state,

eventually publishes all attacker blocks > tB in the same publish action then capitulates to

B0. Then, we have

Vα(B′) = Vα(B′′) + |TA(B
′) \ TA(B)| − |TA(B

′′) \ TA(B)|
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Note that Theorem 7.2 requires x ∈ N+. We have added this condition because, regardless

of the choice of B, having x ∈ N+ is sufficient to show that some strategy, not necessary

optimal, exists which publishes all attacker blocks > tB with certainty from any state B′ ∈

Bx∆. On the other hand, for some choices of B, a choice of x ∈ Z \ N+, would yield a

collection of states Bx∆ where there does not exist a strategy which publishes all attacker

blocks > tB with certainty from any state B′ ∈ Bx∆. For example, from any state B′ ∈

B00∆, every strategy can only publish all attacker blocks > tB0 with probability at most

( α
1−α

). However, in order for some strategy to exist which publishes all attacker blocks

> tB with certainty from state B′ ∈ Bx∆, it is not necessary that x ∈ N+. For example,

there still exists a strategy that publishes all attacker blocks > tB3,0 with certainty from

any state B′ ∈ B3,0(−1)∆. But, B3,0(−1)∆ ⊆ B02∆, where the latter is a collection with

x ∈ N+. Therefore, it seems that requiring x ∈ N+ makes the theorem simpler to reason

about without hindering its applicability.

Next, the condition that the h(C(B))-capitulation of B be B0 is also included for the

sake of making Theorem 7.2 simpler without hindering its applicability. Suppose that the

theorem was stated just as before except without the condition that the h(C(B))-capitulation

of B be B0. Further suppose that, in an application of the theorem, there is some choice

of B such that the h(C(B))-capitulation of B is Bx,0 for some x ∈ N+. That is, there are x

attacker blocks that reach height greater than h(C(B)) at B. So, if a strategy exists which

eventually publishes all attacker blocks > tB in the same publish action then capitulates to

B0, then a strategy also exists which eventually publishes all attacker blocks > tB and all

attacker blocks that can reach height greater than h(C(B)) at B in the same publish action

then capitulates to B0. Moreover, recalling our discussion of thrifty strategies (Definition

5.7), it seems that a strategy which guarantees that attacker blocks > tB will be published

but does not guarantee that attacker blocks that can reach height greater than h(C(B)) at

B will be published would not be thrifty. But, if this is true and in fact an optimal strategy
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guarantees that both the attacker blocks > tB and the attacker blocks that can reach height

greater than h(C(B)) at B will be published, then we can apply the theorem with a different

parameters. In particular, we can select a prefix B− of the original choice of B such that

the h(C(B−))-capitulation is B0 and the blocks which previously reached height greater than

h(C(B)) at B are now included in the set of blocks > tB− . In summary, using this state B−

instead of the original choice of B in an application of the theorem seems to give the same

result while being easier to understand intuitively when considering thrifty strategies.

As a possible point of confusion, note that, whereas the preceding discussion motivated

this theorem using strategy 4-Deficit Tolerance which is not known to be optimal, the

theorem itself is a statement about optimal strategies, since this is most directly related to

our research question. As another possible point of confusion, note that the theorem allows

you to present two different strategies as witnesses to use the claimed equality. That is, the

theorem only requires the existence of one strategy for B′ satisfying the stated properties

and one strategy for B′′ satisfying the stated properties, where these need not be the same

strategy. While we do not expect to leverage this detail when we apply the theorem, the

proof of the theorem provides this additional leeway so we nonetheless include it in the

theorem statement.

To emphasize the usefulness of Theorem 7.2 once more, note that, if some optimal strategy

is shown to have the stated properties for each of states B′ and B′′, then finding the value

of state B′ immediately implies the value of state B′′. One interpretation of this theorem

is that if optimal strategies have certain properties, there are states where the strategy’s

high-level approach is mostly robust to the number of blocks that the attacker owns at these

states. In other words, this theorem may help us rule out a scenario where we have two states

with the same lead over blocks > tB yet the optimal strategy takes substantially different

actions at these states because the exact number of blocks that the attacker owns is different

between these two states. We will concretely demonstrate the power of this theorem later
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Figure 17: State (A, 2H,A,H,A).

on in Section 9.4.

7.2 Symmetry by Swapping Blocks

To motivate the next symmetry we will discuss, consider the state (A, 2H,A,H,A), depicted

in Figure 17. Suppose that, from this state, an optimal strategy for mining strength α will

never publish block 6 on block 5. That is, if block 6 is ever published, it must be published

on some block < 5. For example, block 6 could be published on block 4, possibly by the

action PublishPath({4, 6}, 3). Then, in this case, block 6 behaves exactly the same as if it

were labeled with a ‘5’, since a block labeled with a ‘5’ can similarly only be published on

blocks < 5 and any block that may be published on block 6 may also be published on a

block labeled with a ‘5’.8

The assumption that block 6 is never published on top of block 5 also means that if some

block is ever published on block 5, then it must be some block > 6. But, in this case, block

5 behaves exactly the same as if it were labeled with a ‘6’, since a block labeled with a ‘6’

can similarly be published on block 3 and any block > 6 that may be published on block 5

may also be published on a block labeled with a ‘6’.

Altogether, under the assumption, it seems that we may relabel block 6 with a ‘5’ and

block 5 with a ‘6’ to arrive at state which is identical to state (A, 2H,A,H,A) from an

optimal strategy’s point of view. But, this relabeling exactly yields state (A, 2H, 2A,H),

8Labeling a block with another number is not meant to be a formal statement and is used to build up
intuition.

85



Figure 18: State (A, 2H, 2A,H).

depicted in Figure 18. So, under this assumption, we find that an optimal strategy views

states (A, 2H,A,H,A) and (A, 2H, 2A,H) to be identical. Then, we may suspect that these

states have the same value with respect to an optimal strategy for mining strength α, or

Vα ((A, 2H,A,H,A)) = Vα ((A, 2H, 2A,H))

Zooming out, we have assumed that an optimal strategy at a state with a subsequence

of (H,A) does not publish the latter attacker block on the most immediately prior honest

miner block and claimed that, in this case, we can exchange this subsequence with (A,H)

while preserving the full set of actions such an optimal strategy may want to take now or in

the future. Theorem 7.3 formalizes this claim:

Theorem 7.3 (Symmetry by Swapping Blocks). Let

B = (c1γ
′
1, ..., ci∗−1γ

′
i∗−1, H,A, ci∗+2γ

′
i∗+2, ..., ct′γ

′
t′)

be a valid state in abbreviated notation with ti∗ =
∑i∗

i=1 ci and ti∗ not a checkpoint. Addi-

tionally, let

B′ = (c1γ
′
1, ..., ci∗−1γ

′
i∗−1, A,H, ci∗+2γ

′
i∗+2, ..., ct′γ

′
t′)

identical to B except for γ′
i∗ and γ′

i∗+1 swapped. Finally, let there be an optimal, check-

point recurrent, positive recurrent strategy for mining strength α with zero probability of ever
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publishing block ti∗ + 1 on block ti∗ from state B. Then, we have Vα(B) = Vα(B′).

Note that this theorem can be applied sequentially to relate the value of states that may

be several swaps apart. For example, suppose there is an optimal, checkpoint recurrent,

positive recurrent strategy for mining strength α that never publishes block 6 on block 5

from state (A, 2H,A,H,A,H,A). Through one application of the theorem, we would find

Vα ((A, 2H,A,H,A,H,A)) = Vα ((A, 2H, 2A, 2H,A))

Furthermore, suppose that the same optimal strategy never publishes block 8 on block 7

from state (A, 2H, 2A, 2H,A). Through an additional application of the theorem, we would

find

Vα ((A, 2H, 2A, 2H,A)) = Vα ((A, 2H, 2A,H,A,H))

Finally, suppose that the same optimal strategy never publishes block 7 on block 6 from

state (A, 2H, 2A,H,A,H). Through a final application of the theorem, we would find

Vα ((A, 2H, 2A,H,A,H)) = Vα ((A, 2H, 3A, 2H))

Chaining these equalities together, we find that, if such a strategy exists for mining strength

α, then

Vα ((A, 2H,A,H,A,H,A)) = Vα ((A, 2H, 3A, 2H))

A shortcut to this result is to assume that an optimal strategy never publishes block 6 on

block 5 and never publishes block 8 on block 7 or block 5 from state (A, 2H,A,H,A,H,A)

and directly rearrange this to (A, 2H, 3A, 2H), which simply renumbers block 6 and block
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Figure 19: Suppose that at state (A, 4H,A,H,A, 2H, 2A), depicted on the left-hand side,
an optimal strategy for mining strength α guarantees that all attacker blocks > 5 will be
published in the same publish action. Then, since we may assume that the action which
publishes all attacker blocks > 5 is timeserving, we know that no attacker block > 5 will
ever be published on any honest miner block > 5. So, by repeated application of Theorem
7.3, this state must have equal value to state (A, 4H, 4A, 3H), depicted on the right-hand
side.

8 to be ahead of the two honest blocks that block 6 and block 8 will never be published on

anyways.

As one final comment, in the style of Section 7.1, suppose that there is some state

B′ ∈ Bx∆ with tB + 1 ∈ TA(B
′) and suppose that there is an optimal strategy at this state

that guarantees that all attacker blocks > tB will be published in the same publish action.

Note that the minimum attacker block > tB, which is block tB + 1, may only be published

on blocks ≤ tB. Then, since all attacker blocks > tB are published in the same publish

action and can be assumed to be published in a timeserving manner, all attacker blocks

> tB must be published as a chain on top of some block ≤ tB. In other words, no attacker

block > tB will ever be published on any honest miner block > tB. So, by swapping blocks

> tB according to Theorem 7.3, from the perspective of an optimal strategy, state B′ must

be identical to a state which rearranges all attacker blocks > tB to come before all honest

miner blocks > tB. In turn, this may allow for a better upper bound by an application of

Corollary 6.3. This idea is depicted in Figure 19.

In Section 10, we will use Theorem 7.3 to draw symmetries between states and thereby

save ourselves additional computation.
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8 Non-Checkpoint Finality

Recall Theorem B.1, which states that, without loss of generality, an optimal strategy is

checkpoint recurrent (Definition B.22). Further recall that a checkpoint recurrent strategy π

satisfies the property that all checkpoints (Definition B.21) reach finality (Definition B.19)

with respect to π once they are defined. Yet, the definition of finality maintains the possibility

that a block in the longest path which is not a checkpoint may reach finality. Actually, it is

easy to see that any block b in the longest path reaches finality with respect to a checkpoint

recurrent strategy when a new checkpoint is defined at a greater height since forking b would

also fork the checkpoint, contradicting the fact that the strategy is checkpoint recurrent.

However, it is unclear whether a block b in the longest path can ever reach finality with

respect to an optimal strategy without a checkpoint being defined at a greater height.

Intuition for why we may expect a block b in the longest path to reach finality with respect

to an optimal strategy without a checkpoint being defined at a greater height primarily

revolves around states in the collection Bx∆ where is extremely negative. As an example,

consider state B1,5 ∈ B1,0(−5)∆. At this state, it seems like the attacker is at such a great

deficit of ever publishing block 1 that he might as well forget about block 1 and treat the

most recent honest miner block as if it were the genesis block, despite this honest miner

block not being a checkpoint by our definition. If the attacker does not forget about block 1

and includes it in the longest path at some later time, they may thereby sacrifice alternative

avenues of strategic manipulation that may be more profitable. Appealing to empirical

evidence, strategies in n-Deficit Tolerance are less profitable as they tolerate deficits

larger than four blocks (see Table 1), which suggests that perhaps the longest chain at B1,5

reaches finality with respect to an optimal strategy.

As the following subsections will prove, this intuition mostly holds. In particular, we will

introduce conditions that are sufficient to show that a block reaches finality with respect to
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an optimal strategy even if there is no checkpoint defined at a greater height. This implies

that optimal strategies capitulate at states where these conditions are met. Therefore, these

results further reduce the state space.

8.1 Optimal Capitulation from B1,x to B0

As we previewed in the introduction to this section, there is a lot of intuition that suggests

that an optimal strategy capitulates from B1,x to B0 when x is extremely negative. This

intuition states that, because block 1 is at such a large deficit, it is not clear that a strategy

would ever want to forgo strategic manipulation over more recently mined blocks to publish

block 1.

Additionally, we can easily justify focusing on states of the form B1,x. Note that proving

such an optimal capitulation from some B1,x to B0 would strictly improve the upper bound to

VαPoS(B1,1), since the current upper bound, due to Proposition B.29, assumes that a strategy

never gives up on block 1. In turn, since VαPoS(B1,1) is directly used in our calculation of the

lower bound to αPoS, improving the upper bound on VαPoS(B1,1) improves the lower bound

to αPoS, which is one of the immediate goals of this paper.

Compare this to, for example, state (2A, 1000H). There is nonetheless reason to believe

that an optimal strategy would capitulate from state (2A, 1000H), but the fact that an

optimal strategy publishes at state (2A,H), which precedes state (2A, 1000H), means that

an optimal strategy would never reach state (2A, 1000H), and so this can not be useful

towards bounding αPoS.

We now present Theorem 8.1, the proof of which is deferred to Appendix H.1:

Theorem 8.1 (Sufficient Condition for Capitulation from B1,x to B0). An optimal strategy

for mining strength α capitulates from state B1,x to state B0 if

x >
1− α− λ∗ + αλ∗

α− λ∗ + αλ∗ ,
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where λ∗ = maxπ Rev(π, α). In other words, for x satisfying the inequality above at mining

strength α, we have

Vα(B1,x) = Vα(B0) = 0

Note that this is only a one-way implication; for mining strength α, it may or may not

be optimal to capitulate when x does not satisfy this inequality.

Admittedly, interpreting Theorem 8.1 is difficult. Indeed, it seems circular that λ∗,

the revenue of an optimal strategy for mining strength α, appears in the inequality which

determines if the miner capitulates at state B1,x, since λ∗ itself depends on whether the

miner capitulates at B1,x. Fortunately, we can get a simpler, more helpful claim when we

instantiate this theorem for mining strength α = αPoS, since the definition of αPoS ensures

that λ∗ = maxπ Rev(π, αPoS) = αPoS.

Corollary 8.2 (Sufficient Condition for Capitulation from B1,x to B0 at αPoS). An optimal

strategy for mining strength αPoS capitulates from state B1,x to state B0 if

x >
1− 2αPoS + (αPoS)2

(αPoS)2

In other words, for x satisfying the inequality above at mining strength αPoS, we have

VαPoS(B1,x) = VαPoS(B0) = 0

We plot this inequality in Figure 20 over the interval 0.3080 ≤ α ≤ 0.3247, which we know

αPoS resides in. As can be seen visually or confirmed by the second derivative, 1−2αPoS+(αPoS)2

(αPoS)2

is a decreasing function over the entirety of this range. This means that

1− 2(0.3080) + (0.3080)2

(0.3080)2
≥ 1− 2αPoS + (αPoS)2

(αPoS)2
≥ 1− 2(0.3277) + (0.3277)2

(0.3277)2
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Figure 20: This figure plots the function x = 1−2α+α2

α2 over the known range of αPoS. If the
value of αPoS was known exactly, then for any x that lies above the function evaluated at
αPoS, it would be optimal for mining strength αPoS to capitulate from B1,x to B0.

We can evaluate these bounds to get

5.048 ≥ 1− 2αPoS + (αPoS)2

(αPoS)2
≥ 4.209

Finally, leveraging the fact that x can only take on integer values, we arrive at

6 >
1− 2αPoS + (αPoS)2

(αPoS)2
> 4

There are two conclusions to draw from this. The first and less interesting conclusion

comes from the lower bound to this expression. Regardless of the exact value of αPoS, it will

never be the case that x > 1−2αPoS+(αPoS)2

(αPoS)2
for any x ≤ 4. Therefore, even if it is optimal for

mining strength αPoS to capitulate from B1,x to B0 for some x ≤ 4, Corollary 8.2 can never

be used to show as much.

The second and more interesting conclusion comes from the upper bound to this expres-

sion. Regardless of the exact value of αPoS, it will always be the case that x > 1−2αPoS+(αPoS)2

(αPoS)2

for all x ≥ 6. Therefore, it immediately follows from Corollary 8.2 that it is optimal for

mining strength αPoS to capitulate from B1,x to B0 for all x ≥ 6. This is restated in the

following theorem:
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Theorem 8.3 (Optimal Action at B1,x for x ≥ 6). Let x ≥ 6. At state B1,x, an optimal

checkpoint recurrent, positive recurrent strategy for mining strength αPoS plays Wait and

capitulates from B1,x to B0. Furthermore, for x ≥ 6 and mining strength αPoS, the value

function at B1,x is VαPoS(B1,x) = 0.

Note that the only checkpoint at B1,x is the genesis block. However, due to this capitula-

tion, all blocks in the longest path at B1,x reach finality with respect to an optimal strategy

for mining strength αPoS. Therefore, it is shown that a block may optimally reach finality

without a checkpoint having been established at a greater height.

Additionally, according to Theorem 8.3, the strategy i-Deficit Tolerance for i ≥ 6

cannot be optimal at αPoS. This echos the trend in Table 1 where the performance of

i-Deficit Tolerance seems to deteriorate as i increases past 4.

Finally, using Theorem 8.3, we can improve the upper bound to VαPoS(B1,1). Recall, that

VαPoS(B1,1) = Pr[H1(Xτ ) ∈ TA(Xτ ) | X0 = B0]

Previously, Pr[H1(Xτ ) ∈ TA(Xτ ) | X0 = B0] was bound by the probability that the attacker

ever mines one more block than the honest miner over all blocks > 2. But, using Theorem

8.3, we can now say that Pr[H1(Xτ ) ∈ TA(Xτ ) | X0 = B0] is bound by the probability that

the attacker ever mines one more block than the honest miner over all blocks > 2 given that

the model does not reach B1,6.

This reasoning yields Lemma 8.4, which is stated more generally in case we eventually

find that an optimal strategy capitulates earlier than B1,6. The proof of Lemma 8.4 is

deferred to Appendix H.1:

Lemma 8.4 (Upper Bound on VαPoS(B1,1) Due to Capitulation at B1,x). At state B1,x,

suppose an optimal checkpoint recurrent, positive recurrent strategy for mining strength αPoS

plays Wait and capitulates from B1,x to B0. Then, VαPoS(B1,1) ≤
∑x−1

i=1 (α
PoS)i
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Corollary 8.5 (First Improved Upper Bound on VαPoS(B1,1)). VαPoS(B1,1) ≤
∑5

i=1(α
PoS)i

Indeed, Corollary 8.5 is a tighter upper bound to VαPoS(B1,1) than that offered by Propo-

sition B.29. Therefore, we can use this result to improve the lower bound to αPoS:

Theorem 8.6 (First Improved Lower Bound on αPoS). αPoS ≥ 0.3081

The proof of Theorem 8.6 is found in Appendix H.1.

8.2 Optimal Capitulations from B′ ∈ B(−x)∆ to B0

Having derived a sufficient condition for optimally capitulating from B1,x to B0, we may

hope to derive a sufficient condition for optimally capitulating from a more general state

B′ ∈ B(−x)∆ to B0. Indeed, the following theorem expresses such a sufficient condition,

with its proof similar to that of the last section and deferred to Appendix H.2:

Theorem 8.7 (Sufficient Condition for Capitulation from B′ to B0). Let B be a state with

h(C(B))-capitulation B1,0 and x ≥ max{1, |TA(B)| − 2}. Additionally, let B′ be a state such

that B′ ∈ B(−x)∆ and TA(B
′) \ TA(B) = ∅. Then, an optimal strategy for mining strength

α capitulates from state B′ to state B0 if

∀b ∈ {b′ ∈ TA(B) | (b′ − 1 /∈ TA(B)) ∧ (b′ − 2 /∈ TA(B))}

for S = TA(B) ∩ [b,∞),

(
−|S|+ (x+ h(C(B))− |S| − h(b− 1)) ( α

1−2α
)
)
(1− λ∗)− (x+ h(C(B))− h(b− 1))λ∗ > 0

where λ∗ = maxπ Rev(π, α). In other words, for x satisfying all the inequalities above, we

have

Vα(B′) = Vα(B0) = 0
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First, note that state B′ is simply state B followed by x consecutive rounds where the

honest miner mines a block. Next, Theorem 8.7 requires that B has h(C(B))-capitulation

B1,0 and x ≥ 1 just to ensure that no attacker block at B′ may be published in a timeserving

manner; if some block could be published in a timeserving manner, then it definitely would

not be optimal to capitulate. The theorem additionally enforces that x ≥ |TA(B)| − 2 so

that any future action which publishes an attacker block from B in a timeserving manner

establishes a checkpoint; in general, it is easier to reason about actions where the published

blocks reach finality since this is when we are able to maximally leverage the properties of a

structured strategy.

Next, consider that the blocks owned by the attacker at state B′ may be partitioned such

that the blocks within a partition are all close together and the blocks across two partitions

are all far apart, where this idea of closeness is formalized in the proof. The motivation

behind this partitioning is that, by the assumption that an optimal strategy is thrifty, if one

block in a partition is published, all blocks in that partition must be published. Therefore,

the partitions enumerate all thrifty PublishPath(·, ·) actions which include some block in

TA(B).

But, if every such PublishPath(·, ·) action is dominated by some alternative action which

doesn’t publish any blocks in TA(B), then no blocks in TA(B) will ever be published by an

optimal strategy such that an optimal strategy may forget these blocks and capitulate to

state B0. Indeed, the inequalities are constructed such that, if all the inequalities hold, then

each action which publishes a block in TA(B) is dominated by some action which does not.

Figure 21 shows an example setup for Theorem 8.7.

Unfortunately, to use Theorem 8.7, one is required to check a potentially large number of

inequalities, which can be unwieldy without a computer program. For this reason, we offer

Theorem 8.8. While Theorem 8.8 is easier to use than Theorem 8.7, it is not as powerful. In

other words, if a state B′ satisfies the conditions of Theorem 8.8, then it certainly satisfies
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Figure 21: An example setup for Theorem 8.7, where B = (A, 2H,A, 2H, 2A,H) and B′ =
(A, 2H,A, 2H, 2A,H) is the state which follows B when the honest miner mines two consecu-
tive blocks. Since |TA(B)| = 4, we have that x = 2 ≥ max{1, |TA(B)|−2}, as required by the
theorem. Also annotated here is the set {b′ ∈ TA(B) | (b′ − 1 /∈ TA(B)) ∧ (b′ − 2 /∈ TA(B))},
which in this case is {1, 4, 7}. In the language used in the discussion of Theorem 8.7, each
block in {1, 4, 7} is the head of some partition, where the partitions are {1}, {4}, and {7, 8}.

the conditions of Theorem 8.7. But, the converse is not necessarily true.

Theorem 8.8 (Simpler Sufficient Condition for Capitulation from B′ to B0). Let B be a

state with h(C(B))-capitulation B1,0 and x ≥ max{1, |TA(B)| − 2}. Additionally, let B′ be a

state such that B′ ∈ B(−x)∆ and TA(B
′)\TA(B) = ∅. Then, an optimal strategy for mining

strength α capitulates from state B′ to state B0 if

x >
|TA(B)| − α|TA(B)| − λ∗|TA(B)|+ αλ∗|TA(B)|

α− λ∗ + αλ∗

where λ∗ = maxπ Rev(π, α). In other words, for x satisfying the inequality above, we have

Vα(B′) = Vα(B0) = 0

To nuance these results, even if a state B′ is shown to have value Vα(B′) = 0 by one

of these theorems, there is no guarantee that an optimal strategy reaches state B′; solving
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states which are never reached during optimal play will not help us bound αPoS. Additionally,

both Theorem 8.7 and Theorem 8.8 are one-way implications and cannot be used to show

the optimality of not capitulating.

As on final note, similar to before, one could plug in αPoS for both α and λ∗ in these

theorems to get even simpler inequalities that allow us to make conclusions about optimal

strategies for mining strength αPoS. Then, it may be possible to further tighten the upper

bound to VαPoS(B1,1). However, we will not explore this here because we expect that any

improvement through these means would be marginal.
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9 Optimal Strategy from (A, xH, 2A) for x ∈ {2, 3, 4}

With the tools established in the prior sections, we are able to derive an optimal strategy

for mining strength αPoS from state (A, 2H, 2A). Additionally, for x ∈ {3, 4}, conditioned

on a few conjectures which we believe to be true, we can derive the optimal strategy for an

attacker with mining strength αPoS from state (A, xH, 2A). For reasons that will become

apparent later, we will not consider states (A, xH, 2A) for x ≥ 5. We will state our theorems

here and guide the proofs of these theorems in the following subsections.

Theorem 9.1 (Optimal Action at (A, 2H, 2A)). At state (A, 2H, 2A), an optimal checkpoint

recurrent, positive recurrent strategy for mining strength αPoS plays PublishPath({1, 4, 5}, 0)

and capitulates to B0. Furthermore, for mining strength αPoS, the value function at state

(A, 2H, 2A) is VαPoS ((A, 2H, 2A)) = 3− λ∗ where λ∗ = maxπ Rev(π, αPoS) = αPoS.

Theorem 9.2 (Optimal Action at (A, xH, 2A) for x ∈ {3, 4}). Let Conjecture 9.3 and

Conjecture 9.7 hold. Additionally, let state B = (A, xH, 2A) for x ∈ {3, 4} and let (Xt)t≥0

be a mining game starting at state X0 = B. Then, from state B, an optimal checkpoint

recurrent, positive recurrent strategy for mining strength αPoS plays Wait until the first time

step τ such that

τ1 = min{t ≥ 1 : |TA(Xt)| = |TH(Xt)|+ 1}

τ2 = min{t ≥ 1 : |TA(Xt) \ TA ((A, xH)) | = |TH(Xt) \ TH ((A, xH)) |+ 1}

τ = min{τ1, τ2}

and at time step τ , plays

• PublishPath(TA(Xτ ), 0) if τ = τ1,

• or, PublishPath(TA(Xτ ) \ TA ((A, xH)) , x+ 1) if τ = τ2,
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and capitulates to B0.

In other words, from states (A, 2H, 2A), (A, 3H, 2A), and (A, 4H, 2A), the strategy

4-Deficit Tolerance is optimal for mining strength αPoS.

9.1 Optimal Strategy Conjectured to Play Wait at States with no

At-Risk Blocks

The first conjecture Theorem 9.2 depends on is the following:

Conjecture 9.3 (Optimal Action at (A, xH)y∆ for y /∈ {1, x}). At a state B′ ∈ (A, xH)y∆

for x ∈ {3, 4} with y /∈ {1, x} that is subsequent to state (A, xH, 2A) but is not subsequent to

any state in (A, xH)(−1)∆, an optimal checkpoint recurrent, positive recurrent strategy for

mining strength αPoS plays Wait and does not capitulate state.

To motivate Conjecture 9.3, consider the following definition, with examples depicted in

Figure 22:

Definition 9.4 (At-Risk Block). At state B, a block q ∈ TA(B) is at risk if

• the attacker may publish block q in a timeserving action at state B,

• but, if the attacker instead plays Wait at state B, the probability that the attacker can

ever publish block q in a timeserving action is strictly less than 1

In other words, at state B, an at-risk block q is a block that is only guaranteed to be in the

longest path if it is published at state B. Accordingly, if there is at least one at-risk block at

state B, then say that the action Wait is risky. Finally, if q is an at-risk block at state B,

say that the action Wait at state B risks block q.

If there are no at-risk blocks at state B, then the action Wait seems like it should

be optimal at state B. This is precisely because any block that the attacker may consider
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State Possible Subsequent State from Action Wait

Figure 22: At state (A, 3H, 2A,H) in the top-left cell, blocks 5 and 6 are at risk. As
shown by the orange dotted lines, these blocks may be published in a timeserving action at
(A, 3H, 2A,H). However, if the attacker were to take action Wait, with probability 1 − α,
the honest miner mines the next block and so the game transitions to state (A, 3H, 2A, 2H),
where the attacker is now at a deficit of 1 block to ever publishing blocks 5 and 6 in a
timeserving action. Therefore, playing Wait at (A, 3H, 2A,H) risks blocks 5 and 6. Next, at
state (A, 3H, 3A) in the bottom-left cell, block 1 is at risk. As shown by the orange dotted
lines, block 1 may be published in a timeserving action at (A, 3H, 3A). However, if the
attacker were to take action Wait, with probability 1− α, the honest miner mines the next
block and so the game transitions to state (A, 3H, 3A,H), where the attacker is now at a
deficit of 1 block to ever publishing block 1 in a timeserving action. Therefore, playing Wait
at (A, 3H, 3A) risks block 1.
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publishing at state B can still be published with certainty even if the attacker waits one time

step. Additionally, waiting one time step may even present new, more profitable possibilities.

Similar reasoning underlies elevated strategies (Section 5.1) and patient strategies (Section

5.2). Unfortunately, we are unable to prove this claim and so it is left as a conjecture:

Conjecture 9.5 (Optimal Action at States with no At-Risk Blocks). At any state B where

there are no at-risk blocks, an optimal checkpoint recurrent, positive recurrent strategy for

any mining strength α plays Wait.

But, for any state B′ ∈ (A, xH)y∆ which is subsequent to state (A, xH, 2A) but not

subsequent to any state in (A, xH)(−1)∆, there is an at-risk block at B′ if and only if

y ∈ {1, x}. If B′ ∈ (A, xH)1∆, then all blocks > x + 1 are at risk. Or, if B′ ∈ (A, xH)x∆,

block 1 is at risk. Indeed, the examples in Figure 22 are of this sort. So, if Conjecture 9.5 is

true, then Conjecture 9.3 is also true. Formally, we present the following lemma, the proof

of which is deferred to Appendix I.1:

Lemma 9.6 (Conjecture 9.5 =⇒ Conjecture 9.3). Conjecture 9.5 implies Conjecture 9.3.

So, our belief in Conjecture 9.3 stems from our belief in Conjecture 9.5. Still, we include

Conjecture 9.3 rather than Conjecture 9.5 in Theorem 9.2 since it is more specific and may

be easier to prove than the general case.

9.2 Optimal Strategy Conjectured Publish Block 1 or Play Wait

at (A, xH)x∆

The second conjecture Theorem 9.2 depends on is the following:

Conjecture 9.7 (Optimal Action PlaysWait or Publishes Block 1 at (A, xH)x∆). At a state

B′ ∈ (A, xH)x∆ for x ∈ {3, 4} that is subsequent to state (A, xH, 2A) but is not subsequent
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to any state in (A, xH)(−1)∆, an optimal checkpoint recurrent, positive recurrent strategy

for mining strength αPoS either plays Wait or publishes some set which includes block 1.

Continuing the intuition around at-risk blocks, it seems counterproductive for the attacker

to ever publish blocks which are not at risk while withholding blocks which are at risk. Such

an action seems to exactly invert the priorities that an attacker should have; it seems that the

attacker should prioritize the at-risk blocks over the blocks which are not at risk, since the

attacker may never again get the opportunity to publish the at-risk blocks in a timeserving

action. This intuition is summarized in the following conjecture:

Conjecture 9.8 (Optimal Action Plays Wait or Publishes All At-Risk Blocks). For any

state B, denote R ⊆ TA(B) to be the set of blocks which are at-risk at state B. Furthermore,

let Rc = TA(B) \ R be the set of blocks which are not at-risk at state B. If an optimal

checkpoint recurrent, positive recurrent strategy takes action PublishSet(V ′, E ′) at B and

V ′ ∩ Rc ̸= ∅, then R ⊆ V ′. That is, if an optimal strategy ever publishes some set which

includes at least one block which is not at risk, then the published set includes all blocks which

are at risk.

But, at a state B′ described in Conjecture 9.7, the only at-risk block is block 1. So,

we can easily see that Conjecture 9.8 implies Conjecture 9.7. This is summarized in the

following lemma, for which no proof will be offered:

Lemma 9.9 (Conjecture 9.8 =⇒ Conjecture 9.7). Conjecture 9.8 implies Conjecture 9.7.

Similar to before, our belief in Conjecture 9.7 stems from our belief in Conjecture 9.8.

Still, we include Conjecture 9.7 rather than Conjecture 9.8 in Theorem 9.2 since it is more

specific and may be easier to prove than the general case.

The following implication of Conjecture 9.7 will be useful in the proofs to follow:

102



Lemma 9.10 (Conjecture 9.7 =⇒ Play Wait or Publish All Blocks at (A, xH)x∆). Let

Conjecture 9.7 hold. Then, at a state B′ ∈ (A, xH)x∆ for x ∈ {3, 4} that is subsequent

to state (A, xH, 2A) but is not subsequent to any state in (A, xH)(−1)∆, an optimal check-

point recurrent, positive recurrent strategy for mining strength αPoS either plays Wait or

PublishPath(TA(B
′), 0).

The proof of Lemma 9.10 is deferred to Appendix I.2.

9.3 Optimal Strategy Will Not Risk Blocks at B′ ∈ (A, xH)1∆

Consider a state B′ ∈ (A, xH)1∆ which is subsequent to state (A, xH, 2A) but not subse-

quent to any state in (A, xH)(−1)∆. At state B′, all blocks > x+ 1 are at risk. A priori, it

is unclear whether the attacker should play Wait and thereby risk blocks > x+1 or publish

these blocks at state B′ to guarantee their entry into the longest path. On the one hand,

risking blocks > x + 1 may pay off if the attacker is eventually able to recover block 1. On

the other hand, the attacker may lose a potentially large number of blocks that could have

otherwise been published. Our intuition suggests that the attacker should be less willing to

take this risk as the number of at-risk blocks increases and that the attacker should be less

willing to take this risk as x increases, where x is the number of consecutive honest miner

blocks following block 1. The former bit of intuition simply states that the attacker should

be less willing to take this risk when there is more at stake. The latter bit of intuition comes

from the fact that as x increases, the probability of ever recovering block 1 decreases such

that this favorable outcome carries less weight in the attacker’s decision.

In fact, we are able to show that in such cases, the attacker will never risk blocks > x+1.

This is stated in Lemma 9.11, the proof of which is deferred to Appendix I.3. Note that while

this proof indeed supports the intuition offered above, it just so happens that the conditions

on the number of at-risk blocks and x are not binding.
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Lemma 9.11 (Optimal Action at (A, xH)1∆ for x ∈ {2, 3, 4}). At a state B′ ∈ (A, xH)1∆

for x ∈ {2, 3, 4} that is subsequent to state (A, xH, 2A) but is not subsequent to any state in

(A, xH)0∆, an optimal checkpoint recurrent, positive recurrent strategy for mining strength

αPoS plays PublishPath(UA(B′) ∩ (x+ 1,∞), x+ 1) and capitulates to B0. Furthermore, for

mining strength αPoS, the value function at B′ is VαPoS(B′) = |UA(B′) ∩ (x + 1,∞)| − λ∗

where λ∗ = maxπ Rev(π, αPoS) = αPoS.

Since this tells us that block 1 will certainly not be published in the longest path if the

game reaches a state B′ satisfying the conditions of the lemma, we can use this to improve

the upper bound on VαPoS(B1,1) and in turn improve the lower bound to αPoS:

Lemma 9.12 (Second Improved Upper Bound on VαPoS(B1,1)).

VαPoS(B1,1) ≤
αPoS − (αPoS)4 + (αPoS)5 + (αPoS)6 − (αPoS)7

1− (αPoS)

Theorem 9.13 (Second Improved Lower Bound on αPoS). αPoS ≥ 0.3093

But, this improved lower bound to αPoS allows us to iterate on our previous result over

the range of x for which an optimal strategy may capitulate from B1,x to B0 (see Section

8.1):

Theorem 9.14 (Optimal Action at B1,x for x ≥ 5). Let x ≥ 5. At state B1,x, an optimal

checkpoint recurrent, positive recurrent strategy for mining strength αPoS plays Wait and

capitulates from B1,x to B0. Furthermore, for x ≥ 5 and mining strength αPoS, the value

function at B1,x is VαPoS(B1,x) = 0.

So, we chose not consider states (A, xH, 2A) for x ≥ 5 because an optimal strategy never

reaches such states. But, Theorem 9.14 allows us to improve VαPoS(B1,1) and αPoS yet again:

Lemma 9.15 (Third Improved Upper Bound on VαPoS(B1,1)). VαPoS(B1,1) ≤ αPoS+(αPoS)2+

(αPoS)3 + (αPoS)6
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Theorem 9.16 (Third Improved Lower Bound on αPoS). αPoS ≥ 0.3100

From here, we are not able to iterate further without introducing a conjecture. But,

because the intuition behind Conjecture 9.3 is so strong, we will offer the following lemma:

Lemma 9.17 (Conjecture 9.3 =⇒ Fourth Improved Upper Bound on VαPoS(B1,1)). If

Conjecture 9.3 holds, V(B1,1) ≤ αPoS+(αPoS)3+(αPoS)5+(αPoS)7

1−(αPoS)+(αPoS)2
.

Theorem 9.18 (Conjecture 9.3 =⇒ Fourth Improved Lower Bound on αPoS). If Conjecture

9.3 holds, αPoS ≥ 0.3101

In summary, so far we have shown about half of Theorem 9.2. In particular, we have

shown that, assuming Conjecture 9.3, from (A, xH, 2A) for x ∈ {2, 3, 4}, an optimal strategy

for mining strength αPoS plays Wait until time step at most τ1. Furthermore, if the game

reaches time step τ1 and the attacker has not yet capitulated state, it is shown that it is

optimal to play PublishPath(TA(Xτ ) \ TA ((A, xH)) , x + 1) = PublishPath(UA(Xτ ) ∩ (x +

1,∞), x+ 1). In other words, so far we have shown that an optimal strategy will never risk

blocks > x+ 1.

9.4 Optimal Strategy Will Not Risk Block 1 at B′ ∈ (A, xH)x∆

At this point, we are able to prove the first theorem of this section, Theorem 9.1, which does

not rest on any conjectures and states that an optimal strategy for mining strength αPoS at

(A, 2H, 2A) ∈ (A, 2H)2∆ publishes all blocks and capitulate to B0. This proof can be found

in Appendix I.4 and uses the fact that x = 2 is small such that there is exactly one time step

between (A, 2H, 2A) and (A, 2H, 2A,H) ∈ (A, xH)1∆. Then, since the optimal strategy

for mining strength αPoS at (A, 2H, 2A,H) is known by Lemma 9.11, we know the value of

state (A, 2H, 2A,H) exactly. So, when we suppose that the optimal action at (A, 2H, 2A) is

Wait to draw a contradiction, the contradiction indeed comes easily. Intuitively, the result
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on state (A, 2H, 2A) makes sense; at (A, 2H, 2A), block 1 is at risk and the attacker would

rather publish this block than selfish mine with blocks 4 and 5 since this is a rather small

lead to selfish mine with.

The same proof technique does not work for a state B′ ∈ (A, xH)x∆ for x ∈ {3, 4}

because the corresponding state in (A, xH)1∆ which we would ideally use to show the

suboptimality of playing Wait at state B′ is too many time steps away. Therefore, to reason

about such states, we will need to introduce our conjectures. This gives us the following

lemma:

Lemma 9.19 (Conjectures 9.3, 9.7 =⇒ Optimal Action at (A, xH)x∆ for x ∈ {3, 4}). Let

Conjecture 9.3 and Conjecture 9.7 hold. Then, at a state B′ ∈ (A, xH)x∆ for x ∈ {3, 4}

that is subsequent to state (A, xH, 2A) but is not subsequent to any state in (A, xH)0∆,

an optimal checkpoint recurrent, positive recurrent strategy for mining strength αPoS plays

PublishPath(UA(B′), 0) and capitulates to B0. Furthermore, for mining strength αPoS, the

value function at B′ is VαPoS(B′) = |UA(B′)| − λ∗ where λ∗ = maxπ Rev(π, αPoS) = αPoS.

As a proof sketch for Lemma 9.19, assume that Conjecture 9.3 and Conjecture 9.7 hold.

Then, we may focus on states in (A, xH)x∆ and (A, xH)1∆ which follow state (A, xH, 2A)

but not any state in (A, xH)(−1)∆, since Conjecture 9.3 states that an optimal strategy

plays Wait elsewhere. We have already proven what will happen at states in (A, xH)1∆,

so now we only have to look at states in (A, xH)x∆. At this point, we would like to say

that determining the optimal action reduces to a simple comparison between publishing all

blocks and selfish mining on blocks > x+1. But, this ignores the possibility that an attacker

may risk block 1 now but choose to publish it at a later time if given the chance. In other

words, we cannot rule out the possibility that an attacker plays Wait at state (A, xH, xA)

but publishes all blocks at (A, xH, xA,H,A). This is why we need Conjecture 9.7. By

Conjecture 9.7, or more specifically the implication of this conjecture outlined in Lemma

9.10, from (A, xH, 2A) all blocks > x + 1 are guaranteed to be published. So, we can use
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the symmetry discussed in Section 7.1 to rule out the scenario above and indeed reduce this

to a calculation. Then, this calculation tells us that it is suboptimal to play Wait at a state

in (A, xH)x∆, giving us the result in the lemma. The full the proof of this lemma can be

found in Appendix I.4:

Note that his section does not offer any further improvement to VαPoS(B1,1) since the

main finding of this section is that the strategy does in fact publish block 1 if it is able to;

VαPoS(B1,1) is only improved when we find states which optimally forget block 1.

Finally, Theorem 9.2 simply summarizes the union of Conjecture 9.3, Lemma 9.11, and

Lemma 9.19, so no proof is needed.
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10 Optimal Strategy from (A, xH,A,H,A) for x ∈ {2, 3, 4}

Our next result is an optimal strategy for mining strength αPoS at state (A, xH,A,H,A) for

x ∈ {2, 3, 4}:

Theorem 10.1 (Optimal Action at (A, xH, 2A) for x ∈ {2, 3, 4}). At state (A, xH,A,H,A)

for x ∈ {2, 3, 4}, an optimal checkpoint recurrent, positive recurrent strategy for mining

strength αPoS plays PublishPath({x + 2, x + 4}, x + 1) and capitulates to B0. Further-

more, for mining strength αPoS, the value function at (A, xH,A,H,A) for x ∈ {2, 3, 4}

is VαPoS ((A, xH,A,H,A)) = 2− λ∗ where λ∗ = maxπ Rev(π, αPoS) = αPoS.

In other words, from states (A, 2H,A,H,A), (A, 3H,A,H,A), and (A, 4H,A,H,A), the

strategy 4-Deficit Tolerance is optimal for mining strength αPoS.

As a proof sketch for Theorem 10.1, most of the work is in showing that the attacker

never publishes block x + 4 on top of block x + 3 from state (A, xH,A,H,A). First, we

use the fact that a strategy is thrifty to claim that the attacker publishes block x + 4 on

top of block x+ 3 if and only if they take the action PublishPath({x+ 4}, x+ 3). However,

even under the looseness of Corollary 6.3 this action can be shown to dominated by the

action PublishPath({x + 2, x + 4}, x + 1). Therefore, this action cannot be optimal and so

it follows that the attacker never publishes block x + 4 on top of block x + 3. Then, by

the symmetry discussed in Section 7.2, state (A, xH,A,H,A) is treated identically to state

(A, xH, 2A,H) up to a renaming of the blocks. But, we already know the optimal action

at state (A, xH, 2A,H) for x ∈ {2, 3, 4} so by this symmetry, we immediately obtain the

optimal action at state (A, xH,A,H,A) for x ∈ {2, 3, 4}.

Note that an alternative proof might first show that playing Wait at (A, xH,A,H,A) for

x ∈ {2, 3, 4} is suboptimal then go through the few available structured actions and compare

them directly. However, the chosen proof neatly illustrates the usefulness of Theorem 7.3

and avoids the messy computations required by Corollary 6.3.
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This result further improves the lower bound to αPoS. As before, we will present one

improvement which does not rest on any conjectures and one improvement which rests on

Conjecture 9.3:

Lemma 10.2 (Fifth Improved Upper Bound on VαPoS(B1,1)). VαPoS(B1,1) ≤ αPoS+(αPoS)2+

2(αPoS)6

Theorem 10.3 (Fifth Improved Lower Bound on αPoS). αPoS ≥ 0.3151

Lemma 10.4 (Conjecture 9.3 =⇒ Sixth Improved Upper Bound on VαPoS(B1,1)). If Con-

jecture 9.3 holds, V(B1,1) ≤ αPoS+(αPoS)4+(αPoS)6+(αPoS)8

1−αPoS+(αPoS)2
.

Theorem 10.5 (Conjecture 9.3 =⇒ Sixth Improved Lower Bound on αPoS). If Conjecture

9.3 holds, αPoS ≥ 0.3152
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11 4-Deficit Tolerance is not Optimal for Mining

Strength αPoS

Recall that at each state (A, xH,A,H) for x ∈ {2, 3, 4}, 4-Deficit Tolerance capitulates

to B1,1, thereby forgetting block 1. So, if it is the case that an optimal strategy for αPoS

actually publishes block 1 from such a state with nonzero probability, then 4-Deficit Tol-

erance cannot be optimal. On the other hand, if no optimal strategy ever publishes block

1 from such a state, then indeed it is optimal to capitulate to B1,1. But, then, assuming

Conjectures 9.3 and 9.7 hold, we would find that 4-Deficit Tolerance plays optimally

everywhere for mining strength αPoS. In other words, 4-Deficit Tolerance would be an

optimal strategy for mining strength αPoS and αPoS would precisely be the minimum mining

strength α where 4-Deficit Tolerance performs at least as good as Honest. Here, we

prove that if an optimal strategy reaches state (A, 2H,A, 3H, 3A), then it is shown that

4-Deficit Tolerance is not optimal for mining strength αPoS.

To briefly build up intuition, consider any state of the form (A, 2H,A, xH, xA) for x ≥ 2.

Two such states, (A, 2H,A, 2H, 2A) and (A, 2H,A, 3H, 3A) are depicted in Figure 23. At

any state of the form (A, 2H,A, xH, xA) for x ≥ 2, the attacker has an interesting decision

between publishing now to recover block 4, selfish mining on the most recent blocks, or

trying to recover block 1 without risking blocks > x + 4. Our intuition tells us that selfish

mining on the most recent blocks cannot be optimal when x ≤ 4. This intuition comes from

the fact that at a state (A, xH, xA) for x ∈ {2, 3, 4}, selfish mining does not beat publishing

all blocks now and clearly any action available at (A, xH, xA) must also be available at

(A, 2H,A, xH, xA). Then, it seems that the decision reduces to deciding between publishing

now to recover block 4 and trying to recover block 1 without risking blocks > x + 4. The

action of publishing now to recover block 4 is easy to evaluate. On the other hand, calculating

the value of a strategy which tries to recover block 1 without risking blocks > x+4 is a little
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Figure 23: Two Example States of the Form (A, 2H,A, xH, xA), which are (A, 2H,A, 2H, 2A)
(top) and (A, 2H,A, 3H, 3A) (bottom).

more involved and requires a coupling with random walks. However, our intuition tells us

that as x increases, the probability of recovering block 1 before the lead over blocks > x+4

falls to 1 should increase. Indeed, this intuition holds, as is shown in Figure 24. Then, if

the probability of recovering block 1 increases as x increases, we would suspect that there is

some value of x for which the strategy which tries to recover block 1 without risking block

> x + 4 outperforms the strategy which recovers block 4 at (A, 2H,A, xH, xA). This is

precisely what we find, as stated in Theorem 11.1.

Theorem 11.1 (Suboptimal to Publish at (A, 2H,A, xH, xA) for x ≥ 3). At state B =

(A, 2H,A, xH, xA) for x ≥ 3, it is not optimal for mining strength αPoS to play PublishPath(UA(B)∩

(3,∞), 3) and capitulate to B0.

By the discussion opening this section, Corollary 11.2 clearly follows from Theorem 11.1.

Corollary 11.2 (4-Deficit Tolerance is Not Optimal for Mining Strength αPoS). If an

optimal strategy for mining strength αPoS reaches state (A, 2H,A, 3H, 3A), then, 4-Deficit

Tolerance is not optimal for mining strength αPoS.
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Figure 24: Probability of Recovering Block 1 from states (A, 2H,A, 2H, 2A),
(A, 2H,A, 3H, 3A), and (A, 2H,A, 4H, 4A).

Note that an optimal strategy will indeed reach state (A, 2H,A, 3H, 3A) as long as they

do not publish a singleton set. Indeed, our intuition suggests that publishing a singleton set

is never helpful, though we are only able to formally prove this for mining strengths greater

than αPoS.
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12 Automating the Search for Optimal Strategies

So far, we have shown that the tools built up in Sections 5, 6, 7, and 8 allow us to derive an

optimal strategy at several states, as we have done in Sections 9 and 10. However, even if

Conjecture 9.3 and 9.7 hold, there are still states left to be solved of the form (A, xH,A, 2H)

for x ∈ {2, 3, 4}. Therefore, we may hope to automate this workflow. In this section, we will

introduce a codebase that we have developed towards this purpose. Appendix M provides

instructions for accessing this codebase.

12.1 Enumerating Structured Actions at a State

To determine an optimal strategy from a state B, we first need to know all valid actions at

state B. However, Theorem 5.10 tells us that in fact it is sufficient to consider only structured

actions at state B. Therefore, the first part of this codebase is a module that, given a state

B, lists all structured actions at state B. As was the motivation for introducing structured

actions, there are usually only a few structured actions at any given state. Figure 25 shows

two examples of states and the structured actions available at these states as determined by

the module.
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State Available Structured Actions

Wait

PublishPath({7}, 6)

PublishPath({1, 4, 7, 8, 9}, 0)

Wait

PublishPath({8}, 7)

PublishPath({5, 8, 9}, 4)

Figure 25: The available structured actions at states (A, 2H,A, 2H, 3A) and
(A, 3H,A, 2H, 2A), as would be enumerated by the model.

12.2 Enumerating Reachable States

Now that we know the actions available to a structured strategy at any given state, we can

use this to enumerate all states which may be reachable in an execution of the game. To be

precise, say that a state B is reachable for mining sequence γ1, ..., γt if there is a sequence of

t structured actions a0, ..., at−1 and states X0, X1, ..., Xt such that X0 = B0, Xt = B and for

all i ∈ [t], Xi is the result of the attacker taking action ai−1 at state Xi−1, a miner mining

a block according to γi, and the honest miner taking an action according to Honest. As a

possible point of confusion, note that our definition of a reachable state is not a state which

may occur at the end of a round, but rather a state at which an attacker may select an

action. Then, we can formally define the set of reachable states B in an execution of the
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game to be the following:

B = {B0} ∪
⋃
t∈N+

⋃
γ1,...,γt∈{A,H}t

{B | B is a reachable state for mining sequence γ1, ..., γt}

Although this definition may suggest otherwise, this set can be enumerated fairly easily

using a breadth-first-search algorithm and the module described in Section 12.1. That is, we

can start at states B0,1 and B1,0, which are the only reachable states for mining sequences of

length 1, and enumerate all actions at these states. Once we have enumerated all actions, for

each of states B0,1 and B1,0, we can simulate taking each action at this state then simulate

both possibilities over a miner mining a block, which exactly gives us all reachable states for

mining sequences of length 2. In general, once we have enumerated all reachable states for

mining sequences of length i, for each state we can separately simulate all possible structured

actions and simulate both possibilities over mining a block to yield all reachable states for

mining sequences of length i+ 1.

Clearly, the set B is of interest to us because these are the only states which we have to

solve. Any state not in the set B can be safely ignored since it does not occur during optimal

play.

As one optimization, we can withhold any state with a checkpoint from the set B since

a miner optimally capitulates to a simpler state from any state with a checkpoint.

12.3 Bounding the Value of a Reachable State

For any reachable state B, we are interested in the best lower bound and best upper bound

to the value of this state for mining strength αPoS. In other words, we are searching for the

best lower bound and best upper bound to VαPoS(B). We are interested in these quantities

because they allow us to further bound αPoS, which is a direct goal of our research. Now, we

will explain how to calculate these quantities.
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First, note that each structured action available at state B induces a lower bound to

VαPoS(B). In particular, a structured action available at state B which yields state B′ if the

attacker mines next and state B′′ if the honest miner mines next induces the lower bound

VαPoS(B) ≥ α(rλ∗(B,B′) + VαPoS(B′)) + (1− α)(rλ∗(B,B′′) + VαPoS(B′′))

where λ∗ = maxπ Rev(π, αPoS) = αPoS. The right-hand side of this inequality is simply the

expected value of this action, where the expectation is taken over the choice of the next

miner. If VαPoS(B′) or VαPoS(B′′) are not known exactly, we can in turn use a lower bound

to these quantities; as a preview, this will influence the order in which we resolve states.

At least we know that VαPoS(B′),VαPoS(B′′) ≥ VαPoS(B0) = 0 since a strategy may always

capitulate from any state to B0. Additionally, consider any lower bounds that may be due

to more theoretical results, such as lemmas and theorems derived in this paper or elsewhere.

Finally, from these lower bounds, we want to select the best one. However, since the exact

value of αPoS is unknown, each lower bound is in fact a function of αPoS. Therefore, the best

lower bound to VαPoS(B) that we can derive by these means will be a piecewise function in

αPoS.

Finding the best upper bound to VαPoS(B) is more involved. Whereas every action induces

a lower bound to VαPoS(B), this is not the case for an upper bound to VαPoS(B). Clearly, any

action which is not optimal cannot upper bound VαPoS(B). So, we first start by calculating,

for each structured action available at state B which yields state B′ if the attacker mines

next and state B′′ if the honest miner mines next, the quantity

α(rλ∗(B,B′) + VαPoS(B′)) + (1− α)(rλ∗(B,B′′) + VαPoS(B′′))

where λ∗ = maxπ Rev(π, αPoS) = αPoS. Once again, this is simply the expected value of this

action, where the expectation is taken over the choice of the next miner. If either of VαPoS(B′)
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or VαPoS(B′′) are not known exactly, we will use an upper bound to these quantities; note that

we can upper bound the value of an arbitrary state with Corollary 6.3. Finally, construct

a piecewise function which is the maximum of all these quantities. While the upper bound

to each individual action is not an upper bound to VαPoS(B), the piecewise maximum over

these quantities is an upper bound to VαPoS(B). Next, similar to before, consider any upper

bounds that may be due to more theoretical results. In particular, Corollary 6.3, Corollary

8.2, and Theorem 8.7 may be helpful. Then, of the upper bound which is the piecewise

maximum as discussed previously and the upper bounds due to lemmas or theorems, we will

select the best one to obtain the best upper bound to VαPoS(B) that is known so far.

The correctness of these bounds should be clear. In particular, all actions are certainly

lower bounds to VαPoS(B) and some action is certainly an upper bound to VαPoS(B). Fur-

thermore, all lemmas and theorems which claim to lower bound or upper bound VαPoS(B)

are valid by their proof. So, in using this approach, for any reachable state B, we are able

to find the best lower bound and best upper bound to VαPoS(B) with respect to our current

understanding of the game.

12.4 Searching for Optimal Strategies

At this point, we are almost able to describe the algorithm we have developed to search for

optimal strategies. First, we will describe a simpler algorithm that, for some t ∈ N+, finds

an optimal strategy for all reachable states for mining sequences of length < t assuming that

the value of all reachable states for mining sequences of length t are given as input. This is

algorithm is written as Algorithm 1:

Although we have written the step which sets the optimal action at B as a conditional,

this step will in fact always execute. This is because we have assumed that VαPoS(B) for

all B ∈ {B′ ∈ B | |B′| = t} is provided as an input. In particular, by our choice to start

our loop at states which are deeper into the game, when we iterate over actions according
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Algorithm 1 For some t ∈ N+, finds an optimal strategy for all reachable states for mining
sequences of length < t assuming that the value of all reachable states for mining sequences
of length t are given as input.

Require: t ∈ N+

Require: VαPoS(B) for all B ∈ {B′ ∈ B | |B′| = t}
for B ∈ {B′ ∈ B | |B′| < t} do

Lower-Bound(B)← 0, Upper-Bound(B)←∞
Opt(B)← ε

end for
for i = t− 1, t− 2, ..., 0 do

for B ∈ {B′ ∈ B | |B′| = i} do
Update Lower-Bound(B), Upper-Bound(B) according to Section 12.3
if Lower-Bound(B) = Upper-Bound(B) then

Opt(B)← action which gives best lower bound
end if

end for
end for

to Section 12.3, we will always know VαPoS(B′) and VαPoS(B′′) exactly. So, for any state B

and any action at this state, we will know the value of this action at state B exactly. Then,

comparing actions is easy.

However, we cannot faithfully execute Algorithm 1 because we do not know VαPoS(B);

indeed, this is what we are trying to compute. So, will consider a very similar algorithm

except that instead of assuming that we are given VαPoS(B) for all B ∈ {B′ ∈ B | |B′| = t},

we will simply lower bound and upper bound all such VαPoS(B) using only bounds due to

theorems and lemmas. This means that in most cases the best lower bound to VαPoS(B) will

be VαPoS(B) ≥ 0 and the best upper bound to VαPoS(B) will be due to Corollary 6.3, since

these bounds are applicable in the most general settings. In other words, we are defining all

states on mining sequences of length t to be our base cases in the implicit recursion since we

will not explore actions past these states.

One consequence of this is that the derived lower bound to very valuable states may be

artificially low. For example, let t = 12 and consider state B = (A, 2H,A, 4H, 3A), depicted

in Figure 26. Since t = 12 and |B| = 11, for any state subsequent to B, the lower bound to
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this state is 0 by our discussion above. At state B, our module which enumerates structured

actions will return that the only available structured actions are Wait or PublishPath({9}, 8).

Respectively, these actions give lower bounds

VαPoS(B) ≥ α(0 + 0) + (1− α)(0− λ∗ + 0) = −(1− α)λ∗

VαPoS(B) ≥ α(1− λ∗ + 0) + (1− α)(1− λ∗ − λ∗ + 0) = 1− λ∗ − (1− α)λ∗

More simply, if the attacker plays Wait at B, then they receive mining game reward 0 and

with probability 1−α the honest miner mines and publishes the next block for mining game

reward −λ∗. If the attacker plays PublishPath({9}, 8), then they receive mining game reward

1− λ∗ and with probability 1− α the honest miner mines and publishes the next block for

mining game reward −λ∗. However, these lower bounds are extremely unrepresentative of

how favorable state B is since the attacker has a lead of 3 blocks over all blocks > 8 and

is very close to recovering both blocks 1 and 4. One partial solution to this problem is to

additionally lower bound the value of a state by considering that the attacker may commit

to a strategy from state B, instead of taking a single action at state B. Some example

strategies that the attacker may commit to are:

• Selfish mine on blocks {9, 10, 11} until your lead over blocks > 8 falls to one. Then,

publish all blocks > 8 and capitulate to B0.

• Selfish mine on blocks {9, 10, 11} until you can either publish block 4 in a timeserving

manner or your lead over blocks > 8 falls to one. At either stopping condition, take a

structured action which publishes the maximal set and capitulate to B0.

• Selfish mine on blocks {9, 10, 11} until you can either publish block 1 in a timeserving

manner or your lead over blocks > 8 falls to one. At either stopping condition, take a

structured action which publishes the maximal set and capitulate to B0.
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Figure 26: State (A, 2H,A, 4H, 3A). Certainly, this is a favorable state to be in since the
attacker has a lead of 3 blocks over all blocks > 8 and is very close to recovering both blocks
1 and 4.

The expected reward to all of these strategies can be calculated by using a coupling with

a random walk and by the fact that each strategy capitulates to B0 after taking a publish

action. Additionally, it is possible to enumerate commitments of this form similar to how

we enumerated structured actions, so we can indeed automate the consideration of such

commitments. Still more, at some states, such strategies would clearly give a much better

lower bound than the actions mentioned above.

Finally, we are able to describe the algorithm we have developed to search for optimal

strategies. Of course, we will omit implementation details here in favor of high-level ideas.

This is algorithm is written as Algorithm 2:

Algorithm 2 For some t ∈ N+, calculates a lower and upper bound for all reachable states
for mining sequences of length ≤ t.

Require: t ∈ N+

for B ∈ {B′ ∈ B | |B′| = t} do
Update Lower-Bound(B), Upper-Bound(B) using only lemmas and theorems.

end for
Run Algorithm 1, except with values calculated in the above step as input and the addi-
tional consideration that an attacker may commit to a strategy.

Note that example output of the algorithm can be found by following the links in Ap-

pendix M.
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12.5 Example Findings

Although the codebase is still in development, the algorithm described above has already

derived several interesting results.

First, consider the state B = (A, 2H,A, 2H, 3A), depicted in the top of Figure 25 where

we have also enumerated the actions available at this state. When we examine this state, we

notice that it is somewhat similar to state (5A, 4H), where it is proven optimal to publish all

blocks, and state (4H, 5A), where it is proven optimal to selfish mine. Indeed, both of these

options are available at B. In particular, some options at B are to publish all blocks with

the action PublishPath({1, 4, 7, 8, 9}, 0), selfish mine on the set of blocks {4, 7, 8, 9}, or selfish

mine on the set of blocks {7, 8, 9}. There may also be other options at B which we are not

aware of. So, it is clear that finding an optimal strategy at B will require some calculations.

Nonetheless, since any lead the attacker may selfish mine with at B is not excessively

long, our intuition suggests that the non-risky action PublishPath({1, 4, 7, 8, 9}, 0) should be

optimal since it adds all attacker blocks to the longest path and forks all honest miner blocks

from the longest path. That is, for the quantities

• L = value to playing PublishPath({1, 4, 7, 8, 9}, 0) at B then playing optimally thereon,

• M = value to playing Wait at B then playing optimally thereon,

• and, N = value to playing PublishPath({7}, 6) at B then playing optimally thereon,

we conjecture that L ≥M,N which would implies that PublishPath({1, 4, 7, 8, 9}, 0) is opti-

mal at state B. The quantity L is easy to calculate since a strategy optimally capitulates to

B0 after playing PublishPath({1, 4, 7, 8, 9}, 0). However, since the subsequent states to the

other actions are not as well known, M and N are difficult to calculate. We may hope to

circumvent calculating M and N by showing that L is equal to the upper bound obtained

by applying Corollary 6.3 to state B, but we can easily show that this is not the case.
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Fact 12.1. L < Corollary 6.3 applied to state B

This fact is not particularly surprising because, of course, we cannot expect Corollary

6.3 to be tight in all cases. So, it quickly becomes clear that it will not be easy to prove the

optimality of playing PublishPath({1, 4, 7, 8, 9}, 0) at B through conventional means.

However, the algorithm is indeed able to show that action PublishPath({1, 4, 7, 8, 9}, 0)

is optimal at state B. Here, we will show how the algorithm determines that action

PublishPath({1, 4, 7, 8, 9}, 0) is better than action Wait at state B. In other words, we will

show how the algorithm determines that L > M . The complete sequence of steps leading

up to this result are:

1. The algorithm uses Corollary 6.3 on state (A, 2H,A, 2H, 3A, 2H) to obtain an upper

bound to the value of this state. The significance of this state is that it follows state

B when the honest miner mines two blocks consecutively.

2. The algorithm uses Corollary 6.3 on state (A, 2H,A, 2H, 3A,H,A) to obtain an upper

bound to the value of this state. The significance of this state is that it follows state

B when the honest miner mines the next block and the attacker mines the block after

that.

3. The algorithm uses Corollary 6.3 on state (A, 2H,A, 2H, 4A) to obtain an upper bound

to the value of this state. The significance of this state is that it follows state B when

the attacker mines the next block.

4. The algorithm considers state (A, 2H,A, 2H, 3A,H), which follows state B when the

honest miner mines the next block. The only structured actions at this state are Wait

or PublishPath({7, 8, 9}, 6). Since the attacker optimally capitulates to B0 after playing

action PublishPath({7, 8, 9}, 6), the algorithm easily calculates the value to playing this
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action. Then, the value to the action Wait is

αVα ((A, 2H,A, 2H, 3A,H,A)) + (1− α)(Vα ((A, 2H,A, 2H, 3A, 2H))− λ∗)

But, the algorithm has already upper bounded each of Vα ((A, 2H,A, 2H, 3A,H,A))

and Vα ((A, 2H,A, 2H, 3A, 2H)) in steps (1) and (2) respectively. So, the algorithm

easily computes an upper bound to the action Wait. Finally, the algorithm com-

pares the value of playing action PublishPath({7, 8, 9}, 6) and the upper bound to the

value of playing action Wait to find that the upper bound to the value of playing ac-

tion Wait is larger and so only this quantity can be an actual upper bound to state

(A, 2H,A, 2H, 3A,H).

5. The algorithm considers state B = (A, 2H,A, 2H, 3A). Two structured actions at

this state are Wait and PublishPath({1, 4, 7, 8, 9}, 0). Since the attacker optimally

capitulates to B0 after playing action PublishPath({1, 4, 7, 8, 9}, 0), the algorithm easily

calculates the value to playing this action, which is L in our notation. Then, the value

to the action Wait is

M = αVα ((A, 2H,A, 2H, 4A)) + (1− α)(Vα ((A, 2H,A, 2H, 3A,H))− λ∗)

But, the algorithm has already upper bounded each of Vα ((A, 2H,A, 2H, 4A)) and

Vα ((A, 2H,A, 2H, 3A,H)) in steps (3) and (4) respectively. So, the algorithm easily

computes an upper bound to the value of action Wait. Let this upper bound to the

value of action Wait be denoted O. By definition of O an upper bound to M , we have

that M ≤ O. Finally, the algorithm recognizes that O < L, which means that the

value of playing action PublishPath({1, 4, 7, 8, 9}, 0) is greater than the upper bound to

the value of playing action Wait. But, since we have that M ≤ O, this in turn implies
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M < L, which shows that Wait cannot be optimal at state B and is what we set out

to prove.

In summary, the algorithm is able to prove that Wait is not optimal at B using only the

tools that we have provided it. While we can indeed verify the results given a transcript

similar to that written above, it is much more difficult to generate such a transcript ourselves,

which is the beauty of the algorithm. That is, it would require an impressive stroke of luck

to guess the exact states that we should examine and the exact way in which to upper bound

each such state. Even in the example above, the transcript is a bit surprising; there is a clear

asymmetry in the algorithm upper bounding (A, 2H,A, 2H, 4A) with Corollary 6.3 but then

deciding to upper bound (A, 2H,A, 2H, 3A,H) by the action Wait. But, for any guess we

may make, the required calculations are tedious, which means that we would precisely need

this stroke of luck if we ever hope to derive this result in a reasonable amount of time.

Showing that action PublishPath({1, 4, 7, 8, 9}, 0) is better than action PublishPath({7}, 6)

at state B is similar and omitted for brevity.

But, there are further implications to showing that PublishPath({1, 4, 7, 8, 9}, 0) is optimal

at state B. In the same execution, the algorithm uses this result to in turn prove that

at state (A, 2H,A, 2H, 2A), depicted in Figure 27, the action PublishPath({4, 7, 8}, 3) is

optimal. To see why the result at state (A, 2H,A, 2H, 2A) depends on the result at state

(A, 2H,A, 2H, 3A), consider that the latter state is just the former followed by the attacker

mining a block. Still more optimal actions have been derived by this algorithm but we will

leave this to the materials linked in Appendix M.

Figure 27: State (A, 2H,A, 2H, 2A).
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Finally, the algorithm offers an upper bound to VαPoS(B1,1) which implies that αPoS ≥

0.3189, representing the tightest lower bound to αPoS so far. This is captured in Theorem

12.2, the proof of which is due to the correctness of the codebase:

Theorem 12.2 (Seventh Improved Lower Bound on αPoS). αPoS ≥ 0.3189
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13 Conclusion

In summary, we have modeled mining for cryptocurrency under a proof-of-stake mining

protocol with access to external randomness as a two-player game between an attacker and

an honest miner. This allows us to define the quantity αPoS, which could be understood as the

robustness of such a protocol against strategic manipulation. In developing the performant

strategy 4-Deficit Tolerance, we have shown that αPoS ≤ 0.3235 (Section 4, Corollary

D.11). Then, using a theoretical approach, we are able to trim both the strategy space

(Theorem 5.10) and state space (Theorems 7.2, 7.3, 8.1, and 8.7). This allows us to prove

an optimal strategy at several states (Theorems 9.1, 9.2, and 10.1) which yields the bound

αPoS ≥ 0.3151 and further αPoS ≥ 0.3152 if Conjectures 9.3 and 9.7 hold. We have also

explored a computational approach which lower bounds αPoS at αPoS ≥ 0.3189 (Section 12,

Theorem 12.2). Altogether these results can be interpreted to mean that it is never a Nash

equilibrium for all miners to use the honest mining strategy when some miner owns more

than 32.35% of the total stake but it is always a Nash equilibrium for all miners to use the

honest mining strategy as long as no miner owns more than 31.89% of the total stake. In

light of the massive energy consumption by cryptocurrencies which employ proof-of-work

mining protocols, these results are of interest to environmentally-conscious cryptocurrency

designers and investors.
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14 Future Work

The results of this paper inspire several directions for future work. The most promising

direction is to prove that all attacker blocks reach finality. Another way of stating this is

that an attacker playing optimally will never fork their own blocks from the longest path.

The intuition behind this is that an attacker who considers forking their own blocks from

the longest path can instead use the excess block(s) to selfish mine.

At current, we believe there is the best chance of deriving a counterexample to the claim

that an attacker never forks their own block at a state similar to that shown in Figure 28.

By our measure, all actions taken up to this state are reasonable. The attacker never was

able to publish blocks 1, 4, and 7 is any meaningful way aside from publishing them as

singleton sets, so it is reasonable that they are still unpublished at this state. The attacker

published blocks 10 and 12 at time step 12 to cancel out honest miner block 11 which is

also a reasonable action because otherwise the attacker could have lost blocks 10 and 12.

However, since there are three unpublished blocks and only two published blocks at the time

the attacker publishes blocks 10 and 12, there is still no checkpoint at this state aside from

the genesis block and therefore no evidence that the attacker should optimally capitulate to

B0 at this time step. Then, the attacker mines and withholds 4 blocks in a row to arrive at

the current depicted state. The substantial lead that the attacker has over blocks > 12 that

allows them to recover block 7. Moreover, they may want to try and additionally recover

block 4, since block 4 and block 7 are only one block apart. Still more, for the same reason,

they may want to try and recover block 1. Changing the number of honest miner blocks

between unpublished attacker blocks may show that it is indeed optimal to recover block 1,

4, or 7 and therefore fork the longest path. Then, if an optimal strategy indeed reaches such

a state, it is shown that all attacker blocks do not reach finality.

To see why proving this would be helpful, consider that if all attacker blocks reach finality
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Figure 28: This state is intended to be a possible counterexample to the claim that an
attacker never forks their own blocks.

then it is immediately true that there exists an optimal strongly structured strategy. That

is, we already know that there exists an optimal structured strategy. If we further know that

all attacker blocks reach finality, then the second bullet in the definition of each property

would always be false such that the first bullet in the definition of each property must always

be true. But, this is precisely how a strongly structured strategy is defined.

In turn, assuming an optimal strategy to be strongly structured strategy gives us several

additional nice properties. For instance, if an optimal strategy is strongly structured, then

the attacker capitulates to B0 after any action which is not Wait. This is because the

published block must reach finality such that, by the fact that the strategy is opportunistic,

all unpublished blocks greater than this block must also be published. But, if the attacker

owns no unpublished blocks greater than the block which has reached finality, they must

optimally capitulate to B0.

Furthermore, if an optimal strategy is strongly structured, then there are at most two

possible actions at any given state. The first action is Wait, since this action is always

strongly structured. The second action is the action which publishes the maximal set possi-

ble, since a strongly structured strategy is strongly thrifty. That is, since any publish action

has the same subsequent state which is B0, the only publish action which may be optimal

is the one that publishes the greatest number of blocks possible. It is sufficient to count

the number of blocks being published as opposed to being meticulous with the number of

attacker blocks and honest miner blocks forked from the longest path because there will in
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fact be no attacker blocks in the longest path by the above result that if an attacker block is

ever published, the game resets to B0. The maximal set of blocks that may be published is

unique at any state because if any blocks are absent from this set, they must be the earlier-

mined blocks by the fact that the strategy is timeserving and orderly. Note that this publish

action only exists if it strongly patient to publish to maximal set of blocks. In cases where

it is not strongly patient to publish this set, Wait is the only action and so is immediately

shown to be optimal. In summary, if an attacker never forks their own blocks, then there at

most two action at any state which are Wait and Publish, where no parameters are needed

for the action Publish since the only available publish action is fully determined by the state

of the game.

Additionally, if it is shown that an attacker never forks their own blocks, then all conjec-

tures immediately follow; we will only show the conjectures about at-risk blocks since these

imply the other conjectures:

• Conjecture 9.5: If no block is at risk, then there is no timeserving action which increases

the height of the longest chain by 1, so there is no strongly patient action and Wait

must be optimal.

• Conjecture 9.8: By definition, every at-risk block can be published in a timeserving

action at the current state. Then, all at-risk blocks must clearly be part of the maximal

set that may be published and so it is shown that the only actions available are either

Wait or an action which publishes all at-risk blocks.

Therefore, if an attacker never forks their own blocks, then all results which rest on these

conjectures are true. In particular, by Theorem 10.5, we would be able to raise our lower

bound on αPoS to αPoS ≥ 0.3152.

Even if it is not true that all attacker blocks reach finality, we may still hope to prove

Conjectures 9.3, 9.5, 9.7, and 9.8 by other means. Ideally, we would prove these conjectures
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by assuming the attacker takes some action without the stated properties and show a better

alternative action. This is similar to our proofs of Theorems 5.2, 5.5, 5.8, and 5.13. At this

time, we have not been able to thoroughly investigate this.

Another possible direction for future work is proving the optimal strategy from states

(A, xH,A,H) for x ∈ {2, 3, 4}. Section 11 shows that it is not necessarily true that an

optimal strategy simply capitulates to B1,1 at these states. Additionally, if Conjectures 9.3

and 9.7 hold, these are the only states which remain to be solved. As a guess based on

Theorem 11.1, we believe that an optimal strategy capitulates from (A, 2H,A,H) to B1,1.

Next, there is room for improvement to the codebase discussed in Section 12. Recall that

Corollary 6.3 requires one to select a sequence of increasing heights not exceeding the height

of the longest chain. This means that for a state B, there are about 2h(C(B)) ways in which

Corollary 6.3 may be applied. Iterating through and comparing all possible application may

be computationally expensive. Therefore, one improvement to the codebase may be deriving

an algorithm which is guaranteed to apply Corollary 6.3 in the most effective way possible.

Another possible improvement to the codebase may be rewriting the code in a programming

language which is more strongly-typed. Currently, the code is written in Python, which

makes formal verification difficult. A strongly-typed language may be more conducive to

proving that the code is working as intended.

Finally, to simplify the literature, future work may want to define the model such that

only structured actions are allowed. By Theorem 5.10, this can be done without loss of

generality. More practically, hardcoding structured actions into the model may simplify

discussions and proofs in removing nuanced language (e.g.“without loss, assume that the

action is orderly” or “publishing block 1 in a timeserving manner”).
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A Sample Gameplay

Here, we will present some sample gameplay so that a reader may verify their understanding

of the game. This appendix is meant to be reviewed after the reader has read Section 2.

Recall that, in each round, three separate operations occur, which are, in order,

• some miner mines a block,

• the honest miner takes an action,

• the attacker takes an action

Therefore, we present this sample gameplay as Table 29, where the first column records the

round, the second column has one state diagram representing the state after each operation,

and the third column contains an explanation of what has occurred between the previous

state and the current state.

Let the strategy used by the attacker in the sample gameplay in Table 29 be π. As the

sample gameplay shows, the revenue of the attacker up to round 5 when the mining sequence

is (H,A,A,H,H) and the attacker uses strategy π is

Rev
(5)
(H,A,A,H,H)(π) = 1/2

On the other hand, had the attacker instead used Honest and the same mining sequence

occurred, the revenue of the attacker up to round 5 would be

Rev
(5)
(H,A,A,H,H)(Honest) = 2/5 < 1/2

Therefore, even over this small example, we can already begin to build up intuition for

what strategic manipulation may look like. However, to make a clear distinction between

Rev(t)
γ1,...,γt

(π) and Rev(π, α), only given this sample gameplay, we are far from making
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Round State Transcript

0 Initial state of the game.

1
The honest miner mines block 1.

The honest miner plays
PublishSet({1}, {1 → 0}), such that
block 1 is the new longest chain.

The attacker plays Wait because they do
not own any unpublished blocks.

Figure 29: Sample gameplay in the model described in Section 2. The first column records the
round, the second column has one state diagram representing the state after each operation,
and the third column contains an explanation of what has occurred between the previous
state and the current state. This table is continued on the following pages.

any claims about strategic manipulation since this sample gameplay only examines a finite

number of rounds and one possible mining sequence.
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Round State Transcript

2
The attacker mines block 2.

The honest miner plays Wait because they
do not own any unpublished blocks.

The attacker plays Wait, thus withholding
block 2, which is in violation of the honest
mining strategy.
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Round State Transcript

3
The attacker mines block 3.

The honest miner plays Wait because they
do not own any unpublished blocks.

The attacker plays Wait, thus withholding
block 3, which is in violation of the honest
mining strategy.
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Round State Transcript

4
The honest miner mines block 4.

The honest miner plays
PublishSet({4}, {4 → 1}), such that
block 4 is the new longest chain.

The attacker plays PublishSet({2, 3}, {3→
2, 2 → 1}), thus forking the longest chain
and establishing block 3 as the new longest
chain. The attacker is only able to fork the
longest chain because they withheld blocks
2 and 3. Since the attacker does not pub-
lish on the longest chain, this is in violation
of the honest mining strategy.
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Round State Transcript

5
The honest miner mines block 5.

The honest miner plays
PublishSet({5}, {5 → 3}), such that
block 5 is the new longest chain.

The attacker plays Wait because they do
not own any unpublished blocks.
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B Omitted Content from Related Work

The following are the most important tools used from [4]. Any intuition, interpretation, or

proof of the following tools are omitted for brevity but can be found in [4].

B.1 Markov Decision Process

Definition B.1 (Markov Decision Process for the Mining Game [4]). A Markov Decision

Process (MDP) for the mining game where the attacker uses strategy π and the honest miner

uses Honest is a sequence (Xt)t≥0 where Xt is a random variables representing the state by

the end of round t and before any actions have been taken in round t+ 1. Unless otherwise

stated, we initialize X0 = B0. The game transitions from Xt to Xt+1 once the next block is

created followed by the honest miner taking their action followed by the attacker taking their

action.

Definition B.2 (Capitulating to a State [4]). For a mining game (Xt)t≥0 that starts at

X0 = B0, if state Xt is equivalent to state B in the view of the attacker, then we say that

the attacker capitulates from state Xt to state B.

Definition B.3 (Positive Recurrent [4]). For a mining game (Xt)t≥0 that starts at X0 = B0

where the attacker uses strategy π, let

τ = min{t ≥ 1 | State Xt is equivalent to state B0 in the view of the attacker}

be the first time step the attacker capitulates to state B0. Then we say that the strategy π is

positive recurrent for mining strength α if PrΓ[τ <∞] = 1 and EΓ[τ ] <∞.

Definition B.4 (Rewards [4]). For any two states B and B′, define the attacker’s reward

as the integer-valued function rA from state B to B′ as the difference between the number of
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blocks created by the attacker in the longest path at state B′ and B. That is,

rA(B,B′) = |A(C(B′)) ∩ TA(B
′)| − |A(C(B)) ∩ TA(B)|

Similarly, for any two states B and B′, define the honest miner’s reward as the integer-valued

function rH from state B to B′ as the difference between the number of blocks created by the

honest miner in the longest path at state B′ and B. That is,

rH(B,B′) = |A(C(B′)) ∩ TH(B
′)| − |A(C(B)) ∩ TH(B)|

Definition B.5 (Mining Game Reward [4]). For λ ∈ R, the mining game reward is the

real-valued function rλ from states B and B′ to

rλ(B,B′) = (1− λ)rA(B,B′)− λrH(B,B′)

Definition B.6 (Value Function [4]). The objective function for mining game (Xt)t≥0 is a

real-valued function Vπ
α,λ from state B to

Vπ
α,λ(B) = EΓ [rλ(X0, Xτ )|X0 = B] ,

the expected model reward from a model starting at state X0 = B and stopping at state Xτ

where τ ≥ 1 is the first time step the attacker capitulates to state B0. Define the value

function Vα as the real-valued function from state B to

Vα(B) = Vπ∗

α,λ∗(B)

where λ∗ = maxπ Rev(π, α) and π∗ is an optimal positive recurrent strategy for mining

strength α.
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Lemma B.7 (Value Function of the Initial Model State [4]). Let π∗ be an optimal positive re-

current strategy for mining strength α and let λ∗ = Rev(π∗, α). Then π∗ ∈ argmaxπ Vπ
α,λ∗(B0)

and Vα(B0) = 0.

Claim B.8 (Comparing Revenue of Positive Recurrent Strategies). For positive recurrent

strategies π and π̃,

(i) Vπ
α,λ(B0) = 0 if and only if λ = Rev(π, a)

(ii) Rev(π, α) > Rev(π̃, α) if and only if Vπ
α,Rev(π̃,α)(B0) > 0

(iii) Rev(π, α) < Rev(π̃, α) if and only if Vπ
Rev(π̃,α)(B0) < 0

Lemma B.9 (Bellman’s Principle of Optimality [4]). For all states B, for all positive re-

current strategies π, Vα(B) ≥ Vπ
α,maxπ Rev(π,α)(B).

B.2 Trimming the Strategy Space

B.2.1 Timeserving

Definition B.10 (Timeserving [4]). The action PublishSet(V ′, E ′) is timserving if all blocks

in V ′ immediately enter the longest path (formally: if the action yields state B′, then V ′ ⊆

A(C(B′))). A strategy is timeserving if, when played against Honest, with probability 1, all

PublishSet(V ′, E ′) actions it takes are timeserving.

Definition B.11 (PublishPath [4]). For a set of blocks V in the current block tree and a

set of unpublished blocks U owned by the acting miner, action PublishPath(V ′, u) with u ∈ V

and V ′ ⊆ U is equivalent to taking action PublishSet(V ′, E ′) where E ′ contains an edge from

the minimum element of V ′ to u and an edge from v to the largest element of V ′ strictly less

than v, for all other v ∈ V ′.
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Observation B.12 (PublishPath [4]). A strategy π which is timeserving only takes actions

PublishSet(V ′, E ′) which could equivalently be written as PublishPath(V ′, u) for some u ∈ V ,

the set of blocks in the current block tree.

B.2.2 Orderly

Definition B.13 (Orderly [4]). For U the set of unpublished blocks owned by the acting

miner, an action is orderly if it can be written as PublishPath(V ′, u) and V ′ = min(|V ′|){U ∩

(u,∞)}.9 That is, an action is orderly if it can be written using the PublishPath(·, ·) notation

and it publishes the smallest |V ′| blocks it could have possibly published on top of u. A strategy

is orderly if, when played against Honest, with probability 1, all actions it takes are orderly.

Definition B.14 (Publish [4]). For a set of blocks V in the current block tree and a set of

unpublished blocks U owned by the acting miner, action Publish(k, u) with k ∈ N0 and u ∈ V

is equivalent to taking the action PublishPath(min(k){U ∩ (u,∞)}, u).

Observation B.15 (Publish [4]). A strategy π which is orderly only takes valid actions

PublishSet(V ′, E ′) which could equivalently be written as Publish(k, u) for k = |V ′| and some

u ∈ V , the set of blocks in the current block tree.

B.2.3 Longest Path Mining

Definition B.16 (Longest Path Mining [4]). An action is longest path mining (LPM) at

state B if it can be written as Publish(k, u) and u ∈ A(C(B)) is a block in the longest path

at B. That is, an action is LPM if it can be written using the Publish(·, ·) notation and

it builds on top of some block within the longest path. A strategy is LPM if, when played

against Honest, with probability 1, all actions it takes are LPM.

9Let min(k){S} ⊆ S refer to the min{k, |S|} smallest elements in S and define min(0){S} = ∅.
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Lemma B.17 (Fork Ownership Lemma). Let π be any timeserving, LPM strategy. Let

q ∈ A(C(B)) be a block in the longest path at state B and let q̃ ∈ V (B) be another published

block at state B of the same height (formally, q̃ ̸= q, h(q̃) = h(q)). If r ∈ A(C(B)) is the least

common ancestor of q̃ and q, then the attacker created all blocks between r and q (including

q, not necessarily including r). Formally, A(C(B)) ∩ (r, q] ⊆ TA(B).

B.2.4 Trimmed

Definition B.18 (Trimmed [4]). An action is trimmed at state B if it can be written as

Publish(k, v), v ∈ A(C(B)), and whenever v is not the longest chain (that is, v ̸= C(B)), and

u is the unique node in A(C(B)) with an edge to v, then u was created by the honest miner

(that is, u ∈ TH(B)). A strategy is trimmed if, when played against

B.3 Trimming the State Space

B.3.1 Opportunistic

Definition B.19 (Finality [4]). At state B, a block q ∈ A(C(B)) reaches finality with respect

to strategy π if, with probability 1, π takes no action that removes q from the longest path

for the remainder of the game.

Definition B.20 (Opportunistic [4]). For π a valid strategy, B a state, and U the set of

unpublished blocks owned by the acting miner at B, an action is opportunistic if it can be

written as PublishPath(Q, v) and,

• Q = U(B) ∩ (v,∞). That is, Q is the set of all unpublished blocks greater than v, the

block that this action publishes on.

• or, for subsequent state B′ which follows taking action PublishPath(Q, v) at B, maxQ

does not reach finality with respect to π at state B′.

143



Strategy π is said to be opportunistic if, when played against Honest, with probability 1, at

all states B, strategy π takes an opportunistic action with respect to B and π.

B.3.2 Checkpoints

Definition B.21 (Checkpoints [4]). Based on the current state B, checkpoints are iteratively

defined as follows:

• The first checkpoint, P0 is the genesis block.

• If Pi−1 is undefined, then Pi is undefined as well.

• If Pi−1 is defined, then v is a potential ith checkpoint if:

– v > Pi−1.

– v ∈ A(C(B)).

– Among blocks that the attacker created between Pi−1 and v (including v, not in-

cluding Pi−1), more are in the longest chain than unpublished. That is,

|A(C(B)) ∩ (Pi−1, v] ∩ TA(B)| ≥ |UA(B) ∩ (Pi−1, v]|

• If there are no potential ith checkpoints, then Pi is undefined.

• Else, then Pi is defined to be the minimum potential ith checkpoint.

Definition B.22 (Checkpoint Recurrent [4]). An action at state B which yields state B′

is checkpoint recurrent if it does not fork a checkpoint in B and, if it establishes a new

checkpoint Pi in B′, then UA(B′) ∩ (Pi,∞) = ∅. That is, an action is checkpoint recurrent

if it does not fork a checkpoint and, if it establishes a new checkpoint, the attacker owns no

unpublished blocks greater than the checkpoint. A strategy is checkpoint recurrent if, when

played against Honest, with probability 1, all actions it takes are checkpoint recurrent.
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Observation B.23 (Checkpoint Recurrent [4]). Whenever a new checkpoint is defined, a

checkpoint recurrent strategy capitulates to B0.

B.3.3 Strong Recurrence

Theorem B.1 (Strong Recurrence [4]). At any mining strength α, there exists an optimal

strategy which is timeserving, orderly, LPM, trimmed, opportunistic, checkpoint recurrent,

and positive recurrent.

B.4 Nash Equilibrium

B.4.1 Upper Bounding Vα(B)

Definition B.24 (Maximum Height a Block can Reach). At state B, we say a block b ∈

V (B) ∪ UA(B) ∪ UH(B) can reach height ℓ (from state B) if one of the two holds:

• If b ∈ V (B) was already published, then h(b) ≥ ℓ.

• If b ∈ UA(B)∪UH(B) is unpublished, then there is an action that some miner can take

from state B such that h(b) ≥ ℓ in the subsequent state.

Definition B.25 (Induced Subgraph). Let G = (V,E) be a graph and let S ⊆ V be any

subset of the vertices of G. The induced subgraph G[S] is the graph whose vertex set is S

and whose edge set consists of all edges in E with both endpoints in S.

Definition B.26 (State Capitulation). Let B = (Tree,UA,UH , TA, TH) be a state and let

c ∈ [h(C(B))]. Define D ⊆ A(C(B)) ∪ UA \ {0} as the set of blocks that cannot reach height

≥ c+ 1 from state B. Define the c-capitulation of B as the state

B[V \D] = (Tree[V \D],UA \D,UH \D,TA \D,TH \D)

where Tree[V \D] is an induced subgraph of Tree obtained by deleting blocks D.
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Lemma B.27 (Upper Bounding Vα(B)). For any mining strength α, let B be a state,

c ∈ [h(C(B))], and let B′ be its c-capitulation. Then

Vα(B) ≤ Vα(B′) + rλ∗(B0, B
′)− rλ∗(B0, B) +

c∑
i=1

(Pr[Hi(Xτ ) ∈ TA(Xτ ) | X0 = B]− λ∗)

where λ∗ = maxπ Rev(π, α) is the optimal revenue at mining strength α, and τ is the first

time step the attacker capitulates to B0 in mining game (Xt)t≥0 starting from state X0 = B

where the attacker follows an optimal strategy for mining strength α.

Lemma B.28 (Making Up For a Deficit). For a mining game (Xt)t≥0 starting at any state

X0 = B, the probability that there exists a time t ≥ 1 where the attacker creates k more blocks

than the honest miner from time 1 to t is at most ( α
1−α

)k. Furthermore, if the attacker is at

a deficit of k blocks to ever publishing block b in a timeserving manner at state B (Figure 5),

then, for a mining game (Xt)t≥0 starting at state X0 = B, the probability that the attacker

can publish block b in a timeserving manner at any state XHalf
t is at most ( α

1−α
)k.

Proposition B.29. For all mining strengths α, Vα(B1,1) ≤ α
1−α

B.4.2 Optimal Actions

Proposition B.30. For any mining strength α and any state B, Vα(B) ≥ 0.

Proposition B.31. For any mining strength α, if there is an optimal positive recurrent

strategy that capitulates from state B to state B0, then Vα(B) = 0.

Theorem B.2 (Optimal Action at B0,1). For any mining strength α, at state B0,1, an

optimal checkpoint recurrent, positive recurrent strategy π∗ plays Wait and capitulates from

B0,1 to B0. Furthermore, for all α, the value function at B0,1 is Vα(B0,1) = 0.
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Definition B.32 (Collection of States Ca(B)). Define Ca(B) as the collection of states B′

where

Ca(B) = {B′ is a state : A(C(B′)) ∩ TA(B
′) = ∅,

|TA(B
′)| − |TA(B)| = h(C(B′)),

h(C(B′))− capitulation of B′ is state B}

Theorem B.3 (Optimal Action at Ca(Bk,0)). Let
α(1−α)2

(1−2α)2
≤ 2 and k ≥ 2. Also, let B be a

state in Ca(Bk,0) and let (Xt)t≥0 be a mining game starting at state X0 = B. Then, at state

B, an optimal checkpoint recurrent, positive recurrent strategy π∗ plays Wait until the first

time step τ ≥ 1 where XHalf
τ ∈ Ca(B1,0), at which π∗ plays PublishPath(TA(X

Half
τ ), 0) and

capitulates to B0. Furthermore, for α(1−α)2

(1−2α)2
≤ 2, k ≥ 2, and B ∈ Ca(Bk,0), the value function

at B is Vα(B) = (|TA(B)| − k) +
(
k + (k − 1)( α

1−2α
)
)
(1− λ∗) where λ∗ = Rev(π∗, α).

Corollary B.33 (Optimal Action at B2,0). Let
α(1−α)2

(1−2α)2
≤ 2. Then, at state B2,0, an optimal

checkpoint recurrent, positive recurrent strategy π∗ plays Wait until the first time step τ ≥ 1

where XHalf
τ ∈ Ca(B1,0), at which π∗ plays PublishPath(TA(X

Half
τ ), 0) and capitulates to B0.

Furthermore, for α(1−α)2

(1−2α)2
≤ 2, the value function at B2,0 is Vα(B2,0) =

(
2 + ( α

1−2α
)
)
(1− λ∗)

where λ∗ = Rev(π∗, α).

Theorem B.4 (Optimal Action at BHalf
2,1 ). Let α(1−α)2

(1−2α)2
≤ 2. Then, at state BHalf

2,1 , an optimal

checkpoint recurrent, positive recurrent strategy π∗ plays PublishPath({1, 3}, 0) and capitu-

lates to B0. Furthermore, for all α(1−α)2

(1−2α)2
≤ 2, the value function at BHalf

2,1 is Vα
(
BHalf

2,1

)
=

2− λ∗ where λ∗ = Rev(π∗, α).
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C Random Walks Background

Here, we include some well-known facts about random walks that we will use throughout

our analysis. Proofs for most of these claims are omitted for the sake of brevity but can be

found in the accompanying sources.

Definition C.1 (Random Walk [10]). A biased one-dimensional random walk (St)t≥0 is the

random process

St = S0 +X1 + · · ·+Xt

where X1, X2, ... are i.i.d random variables independent of S0 ∈ Z such that Pr[Xi = 1] = α

and Pr[Xi = −1] = 1− α.

Definition C.2 (Increments and Decrements [4]). Let (St)t≥0 be a biased one-dimensional

random walk. We say that state St is an increment if St+1 = St + 1. Equivalently, state St

is an increment if Xt = 1. Note that the number of increments in the random walk up to

time n can be written as
∑n

t=1 1Xi=1.

On the other hand, we say that state St is a decrement if St+1 = St − 1. Equivalently,

state St is a decrement if Xt = −1. Note that the number of decrements in the random walk

up to time n can be written as
∑n

t=1 1Xi=−1.

Definition C.3 (Hitting Time [10]). Let (St)t≥0 be a biased one-dimensional random walk.

Then, for integers {0, b} such that 0 ≤ S0 ≤ b, the hitting time T of the boundaries {0, b} by

the random walk (St)t≥0 is the firs time that the random walk hits 0 or b, or

T = min{t ≥ 0 | (St = 0) ∨ (St = b)}

Lemma C.4 (Absorption Probability [10]). Let (St)t≥0 be a biased one-dimensional random

walk, integers {0, b} be boundaries such that 0 ≤ S0 ≤ b, and T be the hitting time of the
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boundaries {0, b} by the random walk (St)t≥0. Then, the absorption probability of boundary

b given S0 = i is the probability that the random walk hits boundary b at time T given that

the random walk started at S0 = i and is equal to

Pr[ST = b | S0 = i] =
(1−α

α
)i − 1

(1−α
α

)b − 1

The absorption probability of boundary 0 is defined similarly and is equal to

Pr[ST = 0 | S0 = i] =
(1−α

α
)b − (1−α

α
)i

(1−α
α

)b − 1

Lemma C.5 (Expected Hitting Time [10]). Let (St)t≥0 be a biased one-dimensional random

walk, integers {0, b} be boundaries such that 0 ≤ S0 ≤ b, and T be the hitting time of the

boundaries {0, b} by the random walk (St)t≥0. Then, the expecting hitting time conditioned

on the walk starting at S0 = i is equal to

E[T | S0 = i] =
(1−α

α
)i − 1

(1−α
α

)b − 1

b

2α− 1
− i

2α− 1

Lemma C.6 (Expected Hitting Time Conditioned on Hitting a Boundary [2, 9]). Let (St)t≥0

be a biased one-dimensional random walk, integers {0, b} be boundaries such that 0 ≤ S0 ≤ b,

and T be the hitting time of the boundaries {0, b} by the random walk (St)t≥0. Then, the

expecting hitting time conditioned on hitting boundary 0 at time T , or ST = 0, and the walk

starting at S0 = i is equal to

E[T | S0 = i, ST = 0] =
(2α− 1)−1

(1−α
α

)i − (1−α
α

)b

[
i((1−α

α
)i + (1−α

α
)b) + 2b

(
(1−α

α
)b+i − (1−α

α
)b

1− (1−α
α

)b

)]

The expected hitting time conditioned on hitting boundary b at time T , or ST = b, and the
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walk starting at S0 = i is defined similarly and is equal to

E[T | S0 = i, ST = b] =
(2α− 1)−1

1− (1−α
α

)i

[
(b− i)((1−α

α
)i + 1) + 2b

(
(1−α

α
)i − (1−α

α
)b

(1−α
α

)b − 1

)]

Lemma C.7 (Expected Increments Conditioned on Hitting a Boundary). Let (St)t≥0 be a

biased one-dimensional random walk, integers {0, b} be boundaries such that 0 ≤ S0 ≤ b, and

T be the hitting time of the boundaries {0, b} by the random walk (St)t≥0. Then, the expected

number of increments up to time T conditioned on hitting boundary 0 at time T , or ST = 0

and the walk starting at S0 = i is equal to

E
[ T∑

t=1

1Xt=1 | S0 = i, ST = 0

]
=
(
E[T | S0 = i, ST = 0]− i

)
/2

The expected number of increments up to time T conditioned on hitting boundary b at time

T , or ST = b and the walk starting at S0 = i is defined similarly and is equal to

E
[ T∑

t=1

1Xt=1 | S0 = i, ST = b

]
=
(
E[T | S0 = i, ST = b] + b− i

)
/2

Proof. First we prove the result on E[
∑T

t=1 1Xt=1 | S0 = i, ST = 0]. Since any state St is

either an increment or a decrement, then we have that the sum of increments and decrements

must equal the number of steps T that it takes to hit a boundary, or

T∑
t=1

1Xt=1 +
T∑
t=1

1Xt=−1 = T

Additionally, since the random walk starts at position S0 and ends at position ST = 0, we
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must have that

0 = ST

= S0 +
T∑
i=1

Xi

= S0 +
T∑
i=1

(1Xi=1 − 1Xi=−1)

= S0 +
T∑
i=1

1Xi=1 −
T∑
i=1

1Xi=−1

Then, we can solve the system to obtain:

T∑
i=1

1Xi=1 = (T − S0)/2

When we substitute this into our expectation and repeatedly apply the linearity of expecta-

tion, we obtain the claimed result:

E
[ T∑

t=1

1Xt=1 | S0 = i, ST = 0

]
= E[(T − S0)/2 | S0 = i, ST = 0]

= E[T − S0 | S0 = i, ST = 0]/2

=
(
E[T | S0 = i, ST = 0]− E[S0 | S0 = i, ST = 0]

)
/2

=
(
E[T | S0 = i, ST = 0]− i

)
/2

Now, we prove the result on E[
∑T

t=1 1Xt=1 | S0 = i, ST = b]. Since any state St is either

an increment or a decrement, then we have that the sum of increments and decrements must
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equal the number of steps T that it takes to hit a boundary, or

T∑
t=1

1Xt=1 +
T∑
t=1

1Xt=−1 = T

Additionally, since the random walk starts at position S0 and ends at position ST = b, we

must have that

b = ST

= S0 +
T∑
i=1

Xi

= S0 +
T∑
i=1

(1Xi=1 − 1Xi=−1)

= S0 +
T∑
i=1

1Xi=1 −
T∑
i=1

1Xi=−1

Then, we can solve the system to obtain:

T∑
i=1

1Xi=1 = (T + b− S0)/2

When we substitute this into our expectation and repeatedly apply the linearity of expecta-

tion, we obtain the claimed result:

E
[ T∑

t=1

1Xt=1 | S0 = i, ST = b

]
= E[(T + b− S0)/2 | S0 = i, ST = b]

= E[T + b− S0 | S0 = i, ST = b]/2

=
(
E[T | S0 = i, ST = b] + E[b | S0 = i, ST = b]− E[S0 | S0 = i, ST = 0]

)
/2

=
(
E[T | S0 = i, ST = b] + b− i

)
/2
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Thus, both claims are proven.

Lemma C.8 (Expected Increments with a Single Boundary). Let (St)t≥0 be a biased one-

dimensional random walk with Pr[Xi = 1] = α < 1/2, starting position S0, and Tn be the

hitting time of the boundary S0− n by the random walk (St)t≥0, defined as Tn = min{t ≥ 0 |

St = S0 − n}. Then, the expected number of increments up to time Tn is equal to

E
[ Tn∑

t=1

1Xt=1

]
= n( α

1−2α
)

Proof. The proof is by induction on n. As a base case, consider n = 0:

E
[ T0∑

t=1

1Xt=1

]
= E

[ 0∑
t=1

1Xt=1

]
= 0

= 0( α
1−2α

)

Here we have used the fact that T0 = 0 since S0 = S0− 0. So, for n = 0, the statement holds

and this base case is proven.

As an additional base case, consider n = 1. First, note that for n = 1, we have that

T1 ≥ 1, since S0 > S0 − 1. In other words, for n = 1, the walk will take at least one

step before hitting the boundary S0 − 1. Therefore, using the law of total expectation, we

can partition the sample space on whether X1 = 1 (which happens with probability α) or

X1 = −1 (which happens with probability 1− α):

E
[ T1∑

t=1

1Xt=1

]
= Pr[X1 = 1] · E

[ T1∑
t=1

1Xt=1 | X1 = 1

]

+ Pr[X1 = −1] · E
[ T1∑

t=1

1Xt=1 | X1 = −1
]
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= α · E
[ T1∑

t=1

1Xt=1 | X1 = 1

]
+ (1− α) · E

[ T1∑
t=1

1Xt=1 | X1 = −1
]

= α · E
[ T1∑

t=1

1Xt=1 | X1 = 1

]
+ (1− α) · E

[ 1∑
t=1

1Xt=1 | X1 = −1
]

= α · E
[ T1∑

t=1

1Xt=1 | X1 = 1

]
+ (1− α) · E

[
1X1=1 | X1 = −1

]

= α · E
[ T1∑

t=1

1Xt=1 | X1 = 1

]
+ (1− α) · 0

= α · E
[ T1∑

t=1

1Xt=1 | X1 = 1

]

Here, we pause to note that we have used the fact that if X1 = −1, then S1 = S0+X1 =

S0−1 and so the hitting time T1 conditioned on X1 = −1 is simply 1, allowing us to unravel

the sum. Then, conditioned on X1 = −1, we have that 1X1 = 1, so we can simplify the

second term to 0. We continue the derivation:

E
[ T1∑

t=1

1Xt=1

]
= α · E

[ T1∑
t=1

1Xt=1 | X1 = 1

]

= α · E
[
1X1=1 +

T1∑
t=2

1Xt=1 | X1 = 1

]

= α ·
(
E
[
1X1=1 | X1 = 1

]
+ E

[ T1∑
t=2

1Xt=1 | X1 = 1

])

= α ·
(
1 + E

[ T1∑
t=2

1Xt=1 | X1 = 1

])

Again we pause to explain these lines. The first line is carried over from the previous

derivation. The second line is unraveling the sum once. The third line is due to the linearity

of expectation. The fourth line is due to the fact that conditioned on X1 = 1, the indicator

random variable 1X1=1 = 1.
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Now, consider the quantity E
[∑T1

t=2 1Xt=1 | X1 = 1
]
. This quantity is equal to the

expected number of increments from time t = 2 to time t = T1, given that S1 = S0 + 1. We

can establish a coupling between the random walk (St)t≥1 and another biased one-dimensional

random walk (S ′
t)t≥0 where S ′

0 = S0 + 1 and S ′
t = S ′

0 +X ′
1 + · · · +X ′

t such that X ′
t = Xt+1

for all t. Furthermore, notice that this implies

S ′
t = S ′

0 +X ′
1 + · · ·X ′

t

= (S0 + 1) +X2 + · · ·Xt+1

= S0 +X1 +X2 + · · ·Xt+1

= St

So, the hitting time of boundary S ′
0 − 1 by the random walk (S ′

t)t≥0 is

T ′
1 = min{t ≥ 0 | S ′

t = S ′
0 − 1}

= min{t ≥ 0 | S ′
t = S0 + 1− 1}

= min{t ≥ 0 | S ′
t = S0}

or simply the first time the random walk (S ′
t)t≥0 hits S0, and thereby the first time after

t = 0 that the random walk (St)t≥0 hits S0. Then, since all Xt are i.i.d. the expected

number of increments within the random walk (S ′
t)t≥0 up to time T ′

1 can be expressed using

our notation as E
[∑T1

t=1 1Xt=1

]
. Due to the coupling, this is exactly equal to the expected

number of increments in the random walk (St)t≥1 until St is next equal to S0.

Then, once the random walk next reaches S0, we can use a very similar coupling technique

to show that the expected number of increments within the random walk (St)t≥0 from when it

first returns to St = S0 for some t > 0 to when it reaches St = S0−n is again E
[∑T1

t=1 1Xt=1

]
.
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Therefore, by a coupling argument, we have derived that

E
[ T1∑

t=2

1Xt=1 | X1 = 1

]
= 2E

[ T1∑
t=1

1Xt=1

]
which we can substitute into our previous equation to get

E
[ T1∑

t=1

1Xt=1

]
= α ·

(
1 + 2E

[ T1∑
t=1

1Xt=1

])

= α + 2αE
[ T1∑

t=1

1Xt=1

]

Solving for E
[∑T1

t=1 1Xt=1

]
yields

E
[ T1∑

t=1

1Xt=1

]
=

α

1− 2α
= 1( α

1−2α
)

So, for n = 1, the statement holds and this base case is proven.

Now, we will prove the inductive step. Assume that for some i ∈ N+ the statement

E[
∑Tn

t=1 1Xt=1] = n( α
1−2α

) holds for n = i. Now, we will show that the statement holds for

n = i + 1. First, note that for n = i + 1 ≥ 1, we have that Tn ≥ 1, since S0 > S0 − n.

In other words, for n = i + 1 ≥ 1, the walk will take at least one step before hitting the

boundary S0−n. Therefore, using the law of total expectation, we can partition the sample

space on whether X1 = 1 (which happens with probability α) or X1 = −1 (which happens

with probability 1− α):

E
[ Ti+1∑

t=1

1Xt=1

]
= Pr[X1 = 1] · E

[ Ti+1∑
t=1

1Xt=1 | X1 = 1

]

+ Pr[X1 = −1] · E
[ Ti+1∑

t=1

1Xt=1 | X1 = −1
]
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= α · E
[ Ti+1∑

t=1

1Xt=1 | X1 = 1

]
+ (1− α) · E

[ Ti+1∑
t=1

1Xt=1 | X1 = −1
]

= α ·
(
1 + E

[ Ti+1∑
t=2

1Xt=1 | X1 = 1

])
+ (1− α) · E

[ Ti+1∑
t=2

1Xt=1 | X1 = −1
]

= α ·
(
1 + E

[ Ti+1∑
t=2

1Xt=1 | X1 = 1

])
+ (1− α) · E

[ Ti+1∑
t=2

1Xt=1 | X1 = −1
]

To simplify further, we will use coupling arguments and our inductive hypothesis. First,

note that

E
[ Ti+1∑

t=2

1Xt=1 | X1 = 1

]
= E

[ T1∑
t=1

1Xt=1

]
+ E

[ Ti+1∑
t=1

1Xt=1

]

=
α

1− 2α
+ E

[ Ti+1∑
t=1

1Xt=1

]

or that E
[∑Ti+1

t=2 1Xt=1 | X1 = 1
]
is equal to the sum of the expected number of increments in

a random walk until it first reaches a position one less than its initial position and the same

quantity we are trying to calculate in this inductive step. This is because E
[∑Ti+1

t=2 1Xt=1 |

X1 = 1
]
is the number of additional increments after t = 1 given that the random walk’s

position is S1 = S0 + 1. Therefore, the number of additional increments will be the number

of increments that occur between the random walk going from S0+1 to S0 (captured by the

quantity E
[∑T1

t=1 1Xt=1

]
= α

1−2α
, which is a base case) plus the number of increments that

occur between the random walk going from S0 to S0− (i+1) (captured by E
[∑T1

t=1 1Xt=1

]
).

Note that the walk necessarily reaches S0 before reaching S0− (i+1) because each step only

changes the position by one; the walk may not jump a space.
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Then, note that

E
[ Ti+1∑

t=2

1Xt=1 | X1 = −1
]
= E

[ Ti∑
t=1

1Xt=1

]
= i( α

1−2α
)

or that E
[∑Ti+1

t=2 1Xt=1 | X1 = −1
]
is equal to the expected number of increments until a

random walk starting at S0 first reaches S0− i. This is because E
[∑Ti+1

t=2 1Xt=1 | X1 = −1
]
is

the expected number of increments given that we are now one position closer to our boundary,

which is the same as a random walk where the boundary is one position closer to its starting

position. The second line evaluates E
[∑Ti

t=1 1Xt=1

]
using the inductive hypothesis.

Therefore, we can substitute each of these quantity into our previous formula:

E
[ Ti+1∑

t=1

1Xt=1

]
= α ·

(
1 + E

[ Ti+1∑
t=2

1Xt=1 | X1 = 1

])
+ (1− α) · E

[ Ti+1∑
t=2

1Xt=1 | X1 = −1
]

= α ·
(
1 +

α

1− 2α
+ E

[ Ti+1∑
t=1

1Xt=1

])
+ (1− α) · i( α

1−2α
)

= α + α( α
1−2α

) + αE
[ Ti+1∑

t=1

1Xt=1

]
+ (1− α) · i( α

1−2α
)

=
(
(1− 2α) + α + i(1− α)

)
( α
1−2α

) + αE
[ Ti+1∑

t=1

1Xt=1

]

=
(
(i+ 1)(1− α)

)
( α
1−2α

) + αE
[ Ti+1∑

t=1

1Xt=1

]

Then, solving for E
[∑Ti+1

t=1 1Xt=1

]
yields

E
[ Ti+1∑

t=1

1Xt=1

]
= (i+ 1)( α

1−2α
)
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So, for n = i + 1, the statement holds and the inductive step is proven. Therefore, by the

principle of induction, the claim is true for all n ∈ N0 and thus completes the proof.
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D Omitted Proofs from Section 4

In this appendix, we will compute the revenue of selected strategies from the n-Deficit

Tolerance family of strategies.

First, we prove a helpful claim that allows us to easily compute the probability that the

game reaches any state write in the abbreviated state notation

Claim D.1 (Probability of States in the Game). For a state written in the abbreviated state

notation B = (c1γ
′
1, ..., ct′γ

′
t′), the probability that the game starting from B0 reaches this

state, given that the attacker plays a strategy that does not publish at any state occurring

between B0 and B is

Pr[X∑t′
i=1 ci

= B] = α
∑t′

i=1 1γ′
i
=A·ci(1− α)

∑t′
i=1 1γ′

i
=H ·ci

Proof. The assumption that the attacker plays a strategy that does not publish at any state

occurring between B0 and B means that the state B will be reached with probability 1 if

the corresponding initial mining sequence occurs. Therefore, proving this claim reduces to

calculating the probability of the corresponding initial mining sequence. In turn, since all

Γi are drawn i.i.d., the product will simply have one power of α for every γi which is A and

one power of 1−α for every γi which is H. Of course, with commutativity of multiplication,

we can rearrange these terms. This is captured in the equation above, where we recall that

the abbreviated state notation groups consecutive runs of the same symbol and adds the

multiplicative factor ci.

Next, we will prove claims about how states (2A) and (A, xH, 2A) for x ∈ {2, ..., i} play

out in i-Deficit Tolerance.

Claim D.2 (Expected Attacker Blocks from Bk,0). Let X0 = Bk,0 = (kA) and let τ =

min{t ≥ 1 | |TA(Xt)| = |TH(Xt)| + 1}. Then the expected number of blocks the attacker
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creates from time 1 to τ is E[|TA(Xτ )| − k] = (k − 1)( α
1−2α

).

Proof. Define the biased one-dimensional random walk St = |TA(Xt)| − |TH(Xt)| − k for

t ≥ 0. Then τ is the first step where Sτ = −(k − 1) (observe S0 = 0). The random

variable |TA(Xt)| − k counts the number of time steps St = St−1 + 1 for t ≤ τ . Thus

from Lemma C.8, the expected number of blocks the attacker creates from time 1 to τ is

E[|TA(Xt)| − k] = (k − 1)( α
1−2α

).

Claim D.3 (Expected Hitting Time from (A, xH, 2A) for x ≥ 2). Let X0 = (A, xH, 2A) for

x ∈ N+ \ {1} and let

τ1 = min{t ≥ x+ 4 : |TA(Xt)| = |TH(Xt)|+ 1}

τ2 = min{t ≥ x+ 4 : |TA(Xt) \ TA

(
(A, xH)

)
| = |TH(Xt) \ TH

(
(A, xH)

)
|+ 1}

τ = min{τ1, τ2}

. Then, the expected number value of τ is

E[τ ] =
(1−α

α
)− 1

(1−α
α

)x−1 − 1

x− 1

2α− 1
− 1

2α− 1

Proof. Define the biased one-dimensional random walk St = |TA(Xt) \ TA

(
(A, xH)

)
| −

|TH(Xt) \ TH

(
(A, xH)

)
| − 1 for t ≥ 0. Then τ1 is the first step where Sτ1 = x − 1 and

τ2 is the first step where Sτ2 = 0 (observe S0 = 1). Then, τ is the hitting time of the

boundaries {0, x− 1} by the random walk (St)t≥0. Thus from Lemma C.5, the expectation

of τ is E[τ ] = ( 1−α
α

)−1

( 1−α
α

)x−1−1
x−1
2α−1

− 1
2α−1

.

Now, we prove that all strategies in n-Deficit Tolerance are positive recurrent so

that we may proceed to use the established MDP tools to analyze their revenue.

Claim D.4. All strategies in n-Deficit Tolerance are positive recurrent.
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Proof. Consider a strategy π = i-Deficit Tolerance ∈ n-Deficit Tolerance. Let

(Xt)t≥0 be the game starting at X0 = B0 and let τ ≥ 1 be the first time step the attacker

capitulates to state B0.

First, note that in i + 3 or fewer steps, the game reaches one of (H), (2A), (A,H,A),

(A, xH, 2A) for x ∈ {2, ..., i}, (A, xH,A,H) for x ∈ {2, ..., i}, or (A, (i + 1)H). This is true

because any mining sequence of length i+ 3 over {A,H} contains one of these sequences as

a prefix and at no proper prefix of any of these sequences does the strategy capitulate to a

state or take an action which is not Wait. So, we will prove that for each state, τ is finite

in expectation conditioned on reaching this state, which implies the claim that i-Deficit

Tolerance is positive recurrent:

• (H): The strategy capitulates to B0 at this state, so E[τ | X1 = (H)] = 1 <∞.

• (2A): By the definition of the strategy at (2A), we have

τ = |TA(Xτ )|+ |TH(Xτ )| = 2|TA(Xτ )| − 1

Then, from Claim D.2:

E[τ | X2 = B2,0] = E[2|TA(Xτ )| − 1 | X2 = B2,0]

= 2E[|TA(Xτ )| | X2 = B2,0]− 1

= 2(2 + α
1−2α

)− 1

= 3 + 2
(

α
1−2α

)
<∞

• (A,H,A): The strategy capitulates to B0 at this state, so E[τ | X3 = (A,H,A)] = 3 <

∞.
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• (A, xH, 2A) for x ∈ {2, ...i}: By Claim D.3, from (A, xH, 2A), the expected number of

steps until the strategy publishes and thereby capitulates to B0 is
( 1−α

α
)−1

( 1−α
α

)x−2−1
x−2
2α−1
− 1

2α−1
.

Therefore, adding in the x+ 3 steps it takes to reach state (A, xH, 2A) we have

E[τ | Xx+3 = (A, xH, 2A)] = x+ 3 +

(
(1−α

α
)− 1

(1−α
α

)x−2 − 1

x− 2

2α− 1
− 1

2α− 1

)
<∞

where the last inequality follows from the bounds on x ∈ {2, ..., i} and α ∈ (0, 1/2).

•
(
A, (i + 1)H

)
: The strategy capitulates to B0 at this state, so E[τ | Xi+2 =

(
A, (i +

1)H
)
] = i+ 2 <∞.

• (A, xH,A,H) for x ∈ {2, ..., i}: Here, the strategy capitulates to (A,H). From (A,H),

in i+1 or fewer steps the strategy reaches either (A,H,A), (A, xH, 2A) for x ∈ {2, ..., i},

(A, xH,A,H) for x ∈ {2, ..., i}, or
(
A, (i+1)H

)
. This follows from a similar argument

about any mining sequence of length i+3 over {A,H} having one of these sequences as a

prefix, except now we restrict the mining sequences in consideration to be those starting

with (A,H). For all of these states except (A, xH,A,H) for x ∈ {2, ..., i}, it has already

been shown that the miner will capitulate to B0 in finite expected time. The strategy

reaches some (A, xH,A,H) for x ∈ {2, ..., i} with probability
∑i

x=2 α(1−α)x, where for

a fixed x the summand is derived from noticing that the attacker mines one block (one

power of α) and the honest miner mines x blocks (x powers of 1−α) since (A,H) and

we sum over all possible values of x. Therefore, each time the strategy reaches (A,H)

there is a 1−
∑i

x=2 α(1−α)x probability of reaching a state which capitulates to B0 in

at most i+1 steps and a
∑i

x=2 α(1−α)x probability of capitulating back to (A,H) in

at most i + 1 steps. Then, from (A,H), the number of times the strategy capitulates

to (A,H) before capitulating to B0 is easily modeled by a geometric random variable
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with parameter 1−
∑i

x=2 α(1−α)x and expectation 1
1−

∑i
x=2 α(1−α)x

− 1. Each time the

strategy capitulates to (A,H) before B0, we will add i+1 steps. Finally, we arrive at,

where C represents the finite number of additional steps it takes to capitulate to B0

in expectation when the strategy reaches one of the states above

E[τ | Xx+3 = (A, xH,A,H)]

≤ (x+ 3) + (i+ 3) + (i+ 3)

(
1

1−
∑i

x=2 α(1− α)x
− 1

)
+ C

< ∞

Therefore, since the strategy always reaches one of these states and τ is finite in ex-

pectation conditioned on reaching one of these states, τ is finite in expectation. Therefore,

the strategy i-Deficit Tolerance is positive recurrent for any i ∈ N+ which proves the

claim.

Now, we want to express the value function of the strategy i-Deficit Tolerance, which

will in turn allow us to solve for the revenue of this strategy. We quickly introduce a few

more claims that again couple the mining game with random walks to give more fine-grained

details about the behavior of i-Deficit Tolerance at state (A, xH, 2A), then jump right

into the proof on the value function of i-Deficit Tolerance.

Claim D.5 (Expected Absorption Probabilities from (A, xH, 2A) for x ∈ N+ \ {1}). Let

X0 = (A, xH, 2A) for x ∈ N+ \ {1} and let

τ1 = min{t ≥ x+ 4: |TA(Xt)| = |TH(Xt)|+ 1}

τ2 = min{t ≥ x+ 4: |TA(Xt) \ TA(
(
A, xH)

)
| = |TH(Xt) \ TH(

(
A, xH)

)
|+ 1}

τ = min{τ1, τ2}
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. Then, the probabilities that τ = τ1 and τ = τ2 respectively are

Pr[τ = τ1] =
(1−α

α
)− 1

(1−α
α

)x−1 − 1
Pr[τ = τ2] =

(1−α
α

)x−1 − (1−α
α

)

(1−α
α

)x−1 − 1

Proof. Define the biased one-dimensional random walk St = |TA(Xt) \ TA

(
(A, xH)

)
| −

|TH(Xt) \ TH

(
(A, xH)

)
| − 1 for t ≥ 0. Then τ1 is the first step where Sτ1 = x − 1 and

τ2 is the first step where Sτ2 = 0 (observe S0 = 1). Then, τ is the hitting time of the

boundaries {0, x − 1} by the random walk (St)t≥0. Thus from Lemma C.4, the absorption

probabilities of boundaries {0, x− 1} are

Pr[Sτ = x− 1 | S0 = 1] = Pr[τ = τ1] =
(1−α

α
)− 1

(1−α
α

)x−1 − 1

Pr[Sτ = 0 | S0 = 1] = Pr[τ = τ2] =
(1−α

α
)x−1 − (1−α

α
)

(1−α
α

)x−1 − 1

Claim D.6 (Expected Attacker Blocks from (A, xH, 2A) for x ∈ N+ \ {1} Conditioned on

Hitting a Boundary). Let X0 = (A, xH, 2A) for x ∈ N+ \ {1} and let

τ1 = min{t ≥ x+ 4: |TA(Xt)| = |TH(Xt)|+ 1}

τ2 = min{t ≥ x+ 4: |TA(Xt) \ TA(
(
A, xH)

)
| = |TH(Xt) \ TH(

(
A, xH)

)
|+ 1}

τ = min{τ1, τ2}

. Then, the expected number of blocks the attacker creates from time 1 to τ , conditioned on

τ = τ1 or alternatively conditioned on τ = τ2 respectively are

E[|TA(Xτ ) \ TA

(
(A, xH, 2A)

)
| | τ = τ1] =(

(2α− 1)−1

1− (1−α
α

)

[
((x− 1)− 1)((1−α

α
) + 1) + 2(x− 1)

(
(1−α

α
)− (1−α

α
)x−1

(1−α
α

)x−1 − 1

)]
+ (x− 1)− 1

)
/2
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E[|TA(Xτ ) \ TA

(
(A, xH, 2A)

)
| | τ = τ2] =(

(2α− 1)−1

(1−α
α

)− (1−α
α

)x−1

[
((1−α

α
) + (1−α

α
)x−1) + 2(x− 1)

(
(1−α

α
)x − (1−α

α
)x−1

1− (1−α
α

)x−1

)]
− 1

)
/2

Proof. Define the biased one-dimensional random walk St = |TA(Xt) \ TA

(
(A, xH, 2A)

)
| −

|TH(Xt) \ TH

(
(A, xH, 2A)

)
| − 1 for t ≥ 0. Then τ1 is the first step where Sτ1 = x − 1

and τ2 is the first step where Sτ2 = 0 (observe S0 = 1). Then, τ is the hitting time of

the boundaries {0, x − 1} by the random walk (St)t≥0. Furthermore, the random variable

|TA(Xt)\TA

(
(A, xH, 2A)

)
| counts the number of time steps St = St−1+1, or increments (by

Definition C.2). Thus from Lemma C.6, the expected number of increments conditioned on

hitting boundary x− 1 at time τ and starting from S0 = 1 is

E[|TA(Xτ ) \ TA

(
(A, xH, 2A)

)
| | τ = τ1] =(

(2α− 1)−1

1− (1−α
α

)

[
((x− 1)− 1)((1−α

α
) + 1) + 2(x− 1)

(
(1−α

α
)− (1−α

α
)x−1

(1−α
α

)x−1 − 1

)]
+ (x− 1)− 1

)
/2

and the expected number of increments conditioned on hitting boundary 0 at time τ and

starting from S0 = 1 is

E[|TA(Xτ ) \ TA

(
(A, xH, 2A)

)
| | τ = τ2] =(

(2α− 1)−1

(1−α
α

)− (1−α
α

)x−1

[
((1−α

α
) + (1−α

α
)x−1) + 2(x− 1)

(
(1−α

α
)x − (1−α

α
)x−1

1− (1−α
α

)x−1

)]
− 1

)
/2

There is actually one corner case here where x = 2, in which case the quantity E[|TA(Xτ ) \

TA

(
(A, xH, 2A)

)
| | τ = τ2] is undefined per the above equation. This is because τ = τ1 with

certainty such that the equation doesn’t make sense. When we use this, it will turn out
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not to be an issue since the zero probability that τ = τ2 ensures we will never attempt to

evaluate this.

Theorem D.7 (Value Function of i-Deficit Tolerance). The value function of strategy

π = i-Deficit Tolerance is

0 = Vπ
α,λ(B0) = (see equation below)

where λ = Rev(i-Deficit Tolerance, α).

Proof. Since i-Deficit Tolerance has been proven to be positive recurrent by Claim D.4,

first equality follows directly from Claim B.8.

Now, we will prove the second equality. Let (Xt)t≥ be a game starting at X0 = B0 and

τ = min{t ≥ 1 | π capitulates from Xt to B0}. Then as stated in the proof of Claim D.4, at

some time t ≤ τ , the game is bound to reach a state where it is the attacker’s turn to take

an action in

S = {(H), (2A), (A,H,A),
(
A, (i+ 1)H

)
} ∪

( i⋃
x=2

{(A, xH, 2A)}
)
∪
( i⋃

x=2

(A, xH,A,H)

)

. Therefore, by the law of total expectation, we can rewrite the value function as

Vπ
α,λ(B0) = E[rλ(X0, Xτ ) | X0 = B0]

=
∑
s∈S

Pr[XHalf
|s| = s | X0 = B0]E[rλ(X0, Xτ ) | X0 = B0, X

Half
|s| = s]

Each such Pr[XHalf
|s| = s | X0 = B0] can be easily derived from Claim D.1. Now, we consider

E[rλ(XHalf
|s| , Xτ ) | XHalf

|s| = s] for each sequence:

• (H): At state (H), the strategy plays wait and capitulates to B0, so, conditioned on
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XHalf
1 = 0, we have (H) = X1 = Xτ , which gives us

E[rλ(X0, Xτ ) | X0 = B0, X
Half
1 = (H)] = E[rλ(B0, (H))]

= −E[TH((H))]λ

= −λ

where the last equality follows because the longest path is the honest miner’s sole block.

• (2A): Conditioned on reaching (2A), the strategy will wait until the first time τ where

|TA(Xτ )| = |TH(Xτ )|+ 1, then the strategy publishes blocks TA(Xτ ) on 0 and capitu-

lates to state B0. Therefore, at Xτ the attacker owns |TA(Xτ )| blocks in the longest

path and the honest miner owns 0 blocks, or

E[rλ(X0, Xτ ) | X0 = B0, X
Half
2 = (2A)] = E[TA(Xτ ) | XHalf

2 = (2A)](1− λ)

=
(
2 + ( α

1−2α
)
)
(1− λ)

where the last equality follows by Claim D.2.

• (A,H,A): At state (A,H,A) the strategy publishes blocks 3 and 1 on block 0 then

capitulates to B0. This creates a new longest path where the attacker owns two blocks

and the honest miner owns zero blocks, or

E[rλ(X0, Xτ ) | X0 = B0, X
Half
3 = (A,H,A)] = 2(1− λ)

•
(
A, (i + 1)H

)
: Here, the strategy waits and capitulates to B0, such that XHalf

i+2 =(
A, (i+ 1)H

)
implies

(
A, (i+ 1)H

)
= Xi+2 = Xτ . Then, at Xτ , the only blocks in the
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longest chain are those the honest miner owns or

E[rλ(X0, Xτ ) | X0 = B0, X
Half
i+2 =

(
A, (i+ 1)H

)
] = E[rλ(B0, (

(
A, (i+ 1)H

)
))]

= −E[TH

(
A, (i+ 1)H

)
]λ

= −(i+ 1)λ

• (A, xH, 2A) for x ∈ {2, ..., i}: Conditioned on reaching (A, xH, 2A) for x ∈ {2, ..., i},

the strategy will wait until the first time τ where

τ1 = min{t ≥ x+ 4: |TA(Xt)| = |TH(Xt)|+ 1}

τ2 = min{t ≥ x+ 4: |TA(Xt) \ TA(
(
A, xH)

)
| = |TH(Xt) \ TH(

(
A, xH)

)
|+ 1}

τ = min{τ1, τ2}

. If τ = τ1, the strategy publishes blocks TA(Xτ ) on 0 and capitulates to state B0, thus

owning |TA(Xτ )| blocks in the longest path while the honest miner owns zero blocks.

On the other hand, if τ = τ2, the strategy publishes blocks TA(Xτ ) \ TA

(
(A, xH)

)
on

x + 1 and capitulate to state B0, thus owning |TA(Xτ ) \ TA

(
(A, xH)

)
| = |TA(Xτ )| −

|TA

(
(A, xH)

)
| = |TA(Xτ )| − 1 blocks in the longest path while the honest miner owns

x blocks. So, using the law of total expectation, we find

E[rλ(X0, Xτ ) | X0 = B0, X
Half
x+3 = (A, xH, 2A)]

=
∑

τ ′∈{τ1,τ2}

Pr[τ = τ ′]E[rλ(X0, Xτ ) | X0 = B0, X
Half
x+3 = (A, xH, 2A), τ = τ ′]

=Pr[τ = τ1]E[|TA(Xτ )| | X0 = B0, X
Half
x+3 = (A, xH, 2A), τ = τ1](1− λ)

+ Pr[τ = τ2]
(
E[|TA(Xτ )| − 1 | X0 = B0, X

Half
x+3 = (A, xH, 2A), τ = τ2](1− λ)− xλ

)
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These quantities are known by Claim D.5 and Claim D.6:

Pr[τ = τ1] =
(1−α

α
)− 1

(1−α
α

)x−1 − 1

Pr[τ = τ2] =
(1−α

α
)x−1 − (1−α

α
)

(1−α
α

)x−1 − 1

E[|TA(Xτ )| | X0 = B0, X
Half
x+3 = (A, xH, 2A), τ = τ1] =

3 +

(
(2α− 1)−1

1− (1−α
α

)

[
((x− 1)− 1)((1−α

α
) + 1) + 2(x− 1)

(
(1−α

α
)− (1−α

α
)x−1

(1−α
α

)x−1 − 1

)]
+ (x− 1)− 1

)
/2

E[|TA(Xτ )| − 1 | X0 = B0, X
Half
x+3 = (A, xH, 2A), τ = τ2] =

2 +

(
(2α− 1)−1

(1−α
α

)− (1−α
α

)x−1

[
((1−α

α
) + (1−α

α
)x−1) + 2(x− 1)

(
(1−α

α
)x − (1−α

α
)x−1

1− (1−α
α

)x−1

)]
− 1

)
/2

• (A, xH,A,H) for x ∈ {2, ..., i}: From (A, xH, 2A), the strategy capitulates to (A,H),

cementing x blocks of the honest miner in the longest path. This capitulation means

XHalf
x+3 = (A, xH,A,H) implies (A, xH,A,H) = Xx+3 and Vπ

α,λ

(
(A, xH,A,H)

)
=

Vπ
α,λ(Xx+3) = Vπ

α,λ((A,H)). Therefore, we have,

E[rλ(X0, Xτ ) | X0 = B0, X
Half
x+3 = (A, xH,A,H)]

=E[rλ(X0, Xx+3) + rλ(Xx+3, Xτ ) | X0 = B0, X
Half
x+3 = (A, xH,A,H)]

=E[rλ(X0, Xx+3) | X0 = B0, X
Half
x+3 = (A, xH,A,H)]

+ E[rλ(Xx+3, Xτ ) | X0 = B0, X
Half
x+3 = (A, xH,A,H)]

=E[rλ(X0, Xx+3) | X0 = B0, X
Half
x+3 = (A, xH,A,H)]

+ E[rλ(Xx+3, Xτ ) | X0 = B0, X
Half
x+3 = (A, xH,A,H)]
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=− xλ+ E[rλ(Xx+3, Xτ ) | X0 = B0, X
Half
x+3 = (A, xH,A,H)]

=− xλ+ Vπ
α,λ

(
(A,H)

)

Now, we need to solve for Vπ
α,λ

(
(A,H)

)
. Repeating the reasoning in Claim D.4, from

(A,H), the strategy will reach a state in

S ′ = {(A,H,A),
(
A, (i+ 1)H

)
} ∪

( i⋃
x=2

{(A, xH, 2A)}
)
∪
( i⋃

x=2

(A, xH,A,H)

)

. We can use the law of total expectation as before to rewrite the value function as

Vπ
α,λ

(
(A,H)

)
= E[rλ(X2, Xτ ) | X2 = (A,H)]

=
∑
s′∈S′

Pr[XHalf
|s′| = s′ | X2 = (A,H)]E[rλ(X2, Xτ ) | X2 = (A,H), XHalf

|s′| = s′]

The probabilities Pr[XHalf
|s′| = s′ | X2 = (A,H)] are easy to calculate per Claim D.1.

Furthermore, note that we have already quantified

E[rλ(X2, Xτ ) | X2 = (A,H), XHalf
|s′| = s′]

=E[rλ(X2, Xτ ) | X2 = (A,H), XHalf
|s′| = s′]− λ+ λ

=E[rλ(X2, Xτ ) | X2 = (A,H), XHalf
|s′| = s′] + rλ(B0, (A,H)) + λ

=E[rλ(X0, Xτ ) | X0 = B0, X2 = (A,H), XHalf
|s′| = s′] + λ

for all s′ ∈ S ′. Although E[rλ(X2, Xτ ) | X2 = (A,H), XHalf
x+3 = (A, xH,A,H)] for all

x ∈ {2, ..., 3} will include a term Vπ
α,λ

(
(A,H)

)
when expanded, this can still be solved

algebraically since the coefficients on Vπ
α,λ

(
(A,H)

)
decrease each time the definition is

unraveled, making the total coefficient on Vπ
α,λ

(
(A,H)

)
finite.
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Having derived the expected reward from each state the strategy may hit, we are finally

able to express Vπ
α,λ(B0) in full as

Vπ
α,λ(B0) =

− (1− α)λ

+ α2
(
2 + ( α

1−2α
)
)
(1− λ)

+ α2(1− α)
(
2(1− λ)

)
− α(1− α)i+1

(
(i+ 1)λ

)
+

i∑
x=2

α3(1− α)x
(
px
(
3 + (Ex + (x− 1)− 1)/2

)
(1− λ) + p0

((
2 + (E0 − 1)/2

)
(1− λ)− xλ

))

+
i∑

x=2

α2(1− α)x+1

(
− xλ+ Vπ

α,λ

(
(A,H)

))

where

px =
(1−α

α
)− 1

(1−α
α

)x−1 − 1

p0 =
(1−α

α
)x−1 − (1−α

α
)

(1−α
α

)x−1 − 1

Ex =
(2α− 1)−1

1− (1−α
α

)

[
((x− 1)− 1)((1−α

α
) + 1) + 2(x− 1)

(
(1−α

α
)− (1−α

α
)x−1

(1−α
α

)x−1 − 1

)]
E0 =

(2α− 1)−1

(1−α
α

)− (1−α
α

)x−1

[
((1−α

α
) + (1−α

α
)x−1) + 2(x− 1)

(
(1−α

α
)x − (1−α

α
)x−1

1− (1−α
α

)x−1

)]

and Vπ
α,λ

(
(A,H)

)
is the solution to the equality

Vπ
α,λ

(
(A,H)

)
=

+ α
(
2(1− λ)

)
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− (1− α)i
(
(i+ 1)λ

)
+

i∑
x=2

α2(1− α)x−1

(
px−1

(
3 + (Ex−1 + (x− 1)− 1)/2

)
(1− λ) + p0

((
2 + (E0 − 1)/2

)
(1− λ)− xλ

))

+
i∑

x=2

α(1− α)x
(
− xλ+ Vπ

α,λ

(
(A,H)

))

Now that we have the value function Vπ
α,λ(B0) for i-Deficit Tolerance, we can plug

in a value for i and solve for λ = Rev(i-Deficit Tolerance, α) using Mathematica [5].

Corollary D.8 (Rev(1-Deficit Tolerance, α)).

λ = Rev(1-Deficit Tolerance, α) =
α2(4− 9α + 4α2)

1− α− 2α2 + α3

Furthermore, Rev(1-Deficit Tolerance, α) > α for α > 1/3. Note that this is exactly

the revenue of SM.

Corollary D.9 (Rev(2-Deficit Tolerance, α)).

λ = Rev(2-Deficit Tolerance, α) =
α2(4− 8α− α2 + 7α3 − 3α4)

1− α− 2α2 + 3α4 − 3α5 + α6

Furthermore, Rev(2-Deficit Tolerance, α) > α for α > 0.3247. Note that this is exactly

the revenue of NSM.

Corollary D.10 (Rev(3-Deficit Tolerance, α)).

λ = Rev(3-Deficit Tolerance, α) =
α2(4− 8α + 12α4 − 13α5 + 4α6)

1− α− 2α2 + α4 + 5α5 − 11α6 + 8α7 − 2α8

Furthermore, Rev(3-Deficit Tolerance, α) > α for α > 0.3236.
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Corollary D.11 (Rev(4-Deficit Tolerance, α)).

λ = Rev(4-Deficit Tolerance, α) =
α2(4− 12α + 12α2 − 7α3 + 3α4 + α5 − 5α6 + 4α7 − α8)

1− 2α + α3 − α4 + α5 − 6α7 + 9α8 − 5α9 + α10

Furthermore, Rev(4-Deficit Tolerance, α) > α for α > 0.3235.

Corollary D.12 (Rev(5-Deficit Tolerance, α)).

λ = Rev(5-Deficit Tolerance, α)

= α2(4−20α+44α2−55α3+42α4−31α5+51α6−105α7+156α8−156α9+100α10−37α11+6α12)
1−4α+6α2−3α3−3α4+5α5−8α6+24α7−67α8+120α9−171α10+152α11−86α12+28α13−4α14

Furthermore, Rev(5-Deficit Tolerance, α) > α for α > 0.3236.

Corollary D.13 (Rev(6-Deficit Tolerance, α)).

λ = Rev(6-Deficit Tolerance, α)

= α2(4−32α+120α2−275α3+427α4−484α5+450α6−420α7+414α8−308α9−2α10+387α11−576α12+468α13−231α14+65α15−8α16)
1−7α+22α2−38α3+38α4−14α5−23α6+66α7−134α8+212α9−197α10−36α11+444α12−770α13+778α14−512α15+217α16−54α17+6α18

Furthermore, Rev(6-Deficit Tolerance, α) > α for α > 0.3236.
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E Omitted Proofs from Section 5

E.1 Omitted Proofs from Section 5.1

Claim E.1. At a state B reached by a timeserving, LPM strategy π, let there be a valid,

orderly, LPM, trimmed action PublishPath(Q, v) and let S = {b ∈ V (B) | v ∈ A(b)\{b}, b <

minQ}. If S ̸= ∅, then S ∩A(C(B)) = S. That is, if there is any block with a height greater

than h(v) that minQ could have instead been published on, then all blocks which satisfy this

property are in the longest path.

Proof. The proof is by contradiction. Suppose that at some state B reaches by a timeserving,

LPM strategy π, there is a valid, orderly, LPM, trimmed action PublishPath(Q, v) and

S = {b ∈ V (B) | v ∈ A(b) \ {b}, b < minQ} ≠ ∅ but S ∩ A(C(B)) ̸= S. By assumption,

there is a block bF ∈ S \A(C(B)), where the ‘F ’ means that it is in some fork of the longest

path, such that v ∈ A(bF) \ {bF} and bF < minQ. Then, bF necessarily has an ancestor bF
′

at height h(bF
′
) = h(v) + 1 with an edge to v such that v ∈ A(bF

′
) \ {bF ′}. Now, since S

is nonempty and the height of any element of S is greater than h(v) by the fact that v is

an ancestor of any element in S, the height of the longest chain must be greater than h(v).

Equivalently, if S ̸= ∅, then v ̸= C(B). This means that there exists another unique block

bC ∈ A(C(B)), where the ‘C’ means that it is in the longest path, with height h(bC) = h(v)+1

and an edge to v such that v ∈ A(bC) \ {bC}.

So, we have shown that for some timeserving, LPM strategy π, there are two unique blocks

bF
′
/∈ A(C(B)) and bC ∈ A(C(B)) at the same height of h(bF

′
) = h(bC) = h(v)+1. This height

necessarily means that v is the least common ancestor of blocks bF
′
and bC. Additionally, since

PublishPath(Q, v) is assumed to be an LPM action, we know that v ∈ A(C(B)). Therefore, by

Lemma B.17 (Fork Ownership Lemma), the attacker must have created block bC. However,

since the action PublishPath(Q, v) is assumed to be trimmed, v ∈ A(C(B)), and v ̸= C(B),

we know that the unique node in A(C(B)) with an edge to v must have been created by the

175



honest miner. Therefore, we arrive at a contradiction and the assumption must be false. In

other words, it cannot be the case that S ̸= ∅ and S ∩ A(C(B)) ̸= S. So, it is shown that if

S ̸= ∅, then S ∩ A(C(B)) = S and thus the claim is proven.

Proof of Theorem 5.2. Let π be a timeserving, orderly, LPM, trimmed, opportunistic, check-

point recurrent, and positive recurrent strategy. If π is also elevated, then let π̃ = π and

the proof is complete, since clearly Rev(π̃, α) = Rev(π, α) and π̃ is timeserving, orderly,

LPM, trimmed, opportunistic, checkpoint recurrent, positive recurrent, and elevated. If π

is not elevated, then with nonzero probability, π takes some action which is not elevated.

That is, there exists a state B that occurs with nonzero probability where π takes an action

PublishPath(Q, v) such that

• ∃b such that v ∈ A(b) \ {b} and b < minQ

• and, after taking action PublishPath(Q, v), maxQ reaches finality with respect to π

First, note that by Claim E.1, since we have assumed π to be timeserving, orderly, LPM, and

trimmed (among other properties) and S = {b ∈ V (B) | v ∈ A(b) \ {b}, b < minQ} ̸= ∅, we

know that S ∩ A(C(B)) = S. Then, let v∗ = maxS; that is, let v∗ be the block of maximal

height in A(C(B)) such that minQ may still validly be published on this block.

Before proposing an alternate strategy, let’s calculate the value of state B to π which

plays this action PublishPath(Q, v). Let B′ denote the subsequent state after π takes action

PublishPath(Q, v) at B which is not elevated. Since maxQ reaches finality with respect to

π and π is opportunistic by assumption, then Q = UA(B) ∩ (v,∞). Additionally, from B′

onward, publishing a block ≤ v would require forking block maxQ, but since we know maxQ

has reached finality with respect to π, this will never happen. Therefore, since the attacker

must give up on all their unpublished blocks ≤ v and owns no unpublished blocks > v at

B′, an optimal strategy capitulates from B′ to B0, or Vα(B′) = Vα(B0) = 0. So, if we let
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λ = Rev(π, α), we can express the value of state B to strategy π as

Vπ
α,λ = rλ(B,B′) + Vπ

α,λ(B
′) ≤ rλ(B,B′) + Vα(B′) = rλ(B,B′) + Vα(B0) = rλ(B,B′)

Now, we will express rλ(B,B′), the reward to π of taking action PublishPath(Q, v) at B,

in finer detail by looking at blocks in the longest chain before and after the action. Since

this action is LPM, no blocks are forked from the longest chain at heights ≤ h(v). In other

words, Hi(B) = Hi(B
′) for all i ≤ h(v). Next, we know that Hi(B

′) ∈ TA(B) for all i > h(v)

since the action is timeserving such that the fork it creates ends up being in the longest path.

However, we cannot be sure of the membership of Hi(B) for most h(v) < i < h(C(B)) (with

the exception of possibly Hh(v)+1(B) ∈ TA(B) since we know the action is trimmed). So, we

may write rλ(B,B′) as the sum of three parts (splitting heights > h(v) into three disjoint

sets for reasons that will become clearer later):

rλ(B,B′) = h(v∗)∑
i=h(v)+1

1Hi(B′)∈TA(B′) − 1Hi(B)∈TA(B)

 (1− λ)−

 h(v∗)∑
i=h(v)+1

1Hi(B′)∈TH(B′) − 1Hi(B)∈TH(B)

λ

+

 h(C(B))∑
i=h(v∗)+1

1Hi(B′)∈TA(B′) − 1Hi(B)∈TA(B)

 (1− λ)−

 h(C(B))∑
i=h(v∗)+1

1Hi(B′)∈TH(B′) − 1Hi(B)∈TH(B)

λ

+

 h(C(B′))∑
i=h(C(B))+1

1Hi(B′)∈TA(B′)

 (1− λ)−

 h(C(B′))∑
i=h(C(B))+1

1Hi(B′)∈TH(B′)

λ

=

 h(v∗)∑
i=h(v)+1

1− 1Hi(B)∈TA(B)

 (1− λ)−

 h(v∗)∑
i=h(v)+1

−1Hi(B)∈TH(B)

λ

+

 h(C(B))∑
i=h(v∗)+1

1− 1Hi(B)∈TA(B)

 (1− λ)−

 h(C(B))∑
i=h(v∗)+1

−1Hi(B)∈TH(B)

λ
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+

 h(C(B′))∑
i=h(C(B))+1

1

 (1− λ)−

 h(C(B′))∑
i=h(C(B))+1

0

λ

=

 h(v∗)∑
i=h(v)+1

1− 1Hi(B)∈TA(B)

+

 h(C(B))∑
i=h(v∗)+1

1− 1Hi(B)∈TA(B)

+ (h(C(B′))− h(C(B)))(1− λ)

We will revisit this reward later in the proof.

Now, define a timeserving, orderly, LPM, trimmed, opportunistic, checkpoint recurrent,

positive recurrent, and elevated strategy π̃:

• π̃(B) = π(B) for all states where π takes an elevated action.

• At state X0 = B where π takes action PublishPath(Q, v) which is not elevated, π̃ plays

Wait until the first time step τ where (all variables refer to the game under π̃)

τ = min{t ≥ 1: |TA(Xt) \ TA(B)|+ h(v∗)− h(v) = |TH(Xt) \ TH(B)|}

for v∗ specific to state B which is shown to exist in the discussion above. Then, at time

step τ , π̃ plays PublishPath(UA(XHalf
τ ) ∩ (v,∞), v∗), and subsequently capitulates to

B0.

Clearly, actions taken at states B handled by the first bullet point are valid, timeserv-

ing, orderly, LPM, trimmed, opportunistic, checkpoint recurrent, and positive recurrent by

the assumption that π meets these criteria and furthermore elevated since this is the con-

dition in which we use the first bullet point. Additionally, since the second bullet point

never capitulates to any state handled by the first bullet point, we can see that no loops

exist that would complicate the interplay between states handled by the first bullet point

and states handled by the second bullet point. So, to show that π̃ is timeserving, orderly,

LPM, trimmed, opportunistic, checkpoint recurrent, positive recurrent, and elevated, it only
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remains to be shown that all actions taken at states B handled by the second bullet point

are valid, timeserving, orderly, LPM, trimmed, opportunistic, checkpoint recurrent, positive

recurrent, and elevated in our definition of π̃. Still more, since the action Wait trivially

satisfies all criterion, we can focus on the publish action that occurs at time step τ .

First, note that since v∗ < minQ = min(UA(B) ∩ (v,∞)), we also have that v∗ <

min(UA(XHalf
τ ) ∩ (v,∞)) since each new block the attacker mines after B (if any) has a

strictly greater timestamp than v. Therefore, this action is valid.

To show that the action is timeserving, we have to show that, following the publish action,

the maximum block in the published set is the unique longest chain. Recall that by virtue

of π a timeserving strategy, the action PublishPath(Q, v) must have been timeserving. This

means that h(v)+ |Q| = h(v)+(UA(B) ∩ (v,∞)) > h(C(B)). By how we defined π̃, we know

that at XHalf
τ we publish UA(XHalf

τ ) ∩ (v,∞) = (UA(B) ∩ (v,∞)) ∪ (TA(Xτ ) \ TA(B)). At

the same time, at XHalf
τ the height of the longest chain has increased by |TH(Xτ )\TH(B)|, or

h(C(XHalf
τ )) = h(C(B))+|TH(Xτ )\TH(B)| since the honest miner publishes every block they

mine. The following chain of inequalities shows that the maximum block in the published

set indeed reaches height (strictly) greater than h(C(XHalf
τ )):

h(v∗) + |UA(XHalf
τ ) ∩ (v,∞)| = h(v∗) + | (UA(B) ∩ (v,∞)) ∪ (TA(Xτ ) \ TA(B)) |

= h(v∗) + |UA(B) ∩ (v,∞)|+ |TA(Xτ ) \ TA(B)|

= h(v∗)− h(v) + h(v) + |UA(B) ∩ (v,∞)|+ |TA(Xτ ) \ TA(B)|

> h(v∗)− h(v) + h(C(B)) + |TA(Xτ ) \ TA(B)|

= h(C(B)) + |TH(Xτ ) \ TH(B)|

= h(C(XHalf
τ ))

The first line is due to the definition of the strategy π̃. The second line is because UA(B) ∩

(v,∞) and TA(Xτ ) \ TA(B) are disjoint. The third line is algebra. The fourth line is due
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to the fact that π is assumed to be timeserving. The fifth line is by definition of τ . The

sixth line is by definition of the honest mining strategy and the fact that π̃ does not publish

between B and XHalf
τ . Therefore, it is shown that the action is timeserving.

Next, we want to show that this action is orderly. Note that we have UA(XHalf
τ ) ∩

(v∗,∞) ⊆ UA(XHalf
τ )∩(v,∞). Now, assume that UA(XHalf

τ )∩(v∗,∞) ⊂ UA(XHalf
τ )∩(v,∞).

Then, there is some block b ∈ UA(XHalf
τ ) such that v < b < v∗. Then, since v∗ < minQ

by construction, we have that v < b < v∗ < minQ, or v < b < minQ. Furthermore,

since the timestamps on mined blocks are monotonically increasing, it must be the case that

b ∈ UA(B). But, since the strategy π is orderly, for action PublishPath(Q, v) which it takes at

state B, we have that Q = min(|Q|)(UA(B)∩(v,∞)). Yet, we have found a b ∈ UA(B)∩(v,∞)

which is less than all blocks in Q, which is a contradiction and so such a b must not exist

and we have UA(XHalf
τ ) ∩ (v∗,∞) = UA(XHalf

τ ) ∩ (v,∞). Then, since we trivially have

min(|UA(XHalf
τ )∩(v∗,∞)|) (UA(XHalf

τ ) ∩ (v∗,∞)
)
= UA(XHalf

τ ) ∩ (v∗,∞), we find that the action

is orderly at XHalf
τ since it may be rewritten as

PublishPath(
(|UA(XHalf

τ )∩(v∗,∞)|)
min

(
UA(XHalf

τ ) ∩ (v∗,∞)
)
, v∗)

The action is clearly LPM since v∗ ∈ A(C(B)) by construction and therefore v∗ ∈

A(C(XHalf
τ )) since π̃ only plays Wait between B and XHalf

τ and the honest miner never

forks.

To show that the action is trimmed, we first show that v∗ ̸= C(XHalf
τ ). If we can show

that at least one block is published by the honest miner between B and XHalf
τ , then this

immediately follows. So, consider the following derivation:

(# blocks published by honest miner between XHalf
τ and B) = |TH(Xτ ) \ TH(B)|

= |TA(Xτ ) \ TA(B)|+ h(v∗)− h(v)
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≥ |TA(Xτ ) \ TA(B)|+ 1

≥ 1

On the first line, we use the fact that all blocks mined by the honest miner between B and

XHalf
τ are published. On the second line, we use the definition of τ . On the third line,

we use the fact that the height of v∗ is greater than the height of v. On the fourth line,

we use the fact that the attacker mines a nonnegative number of blocks between B and

XHalf
τ . Therefore, we find that indeed the honest miner publishes at least one block between

B and XHalf
τ and so it is shown that v∗ ̸= C(XHalf

τ ). Now, to show the publish action is

trimmed, the proof obligation is to show that the unique block b ∈ A(C(B)) with an edge to

v∗ was created by the honest miner. The proof is by contradiction; suppose the the unique

block b ∈ A(C(XHalf
τ )) with an edge to v∗ was created by the attacker. Additionally, by

the assumption that v∗ is the block at the maximal height at which we may publish minQ,

we must have that minQ < b. Putting this together, we have v∗ < minQ < b. However,

this contradicts the fact that the strategy is orderly since the action which published b on v∗

should have instead published minQ on v∗, since minQ was hidden at that time and smaller

than b, both of which follow from the fact that minQ < b. Therefore, b must not be owned

by the attacker and so we find that the action is trimmed.

The action is opportunistic because it may be rewritten as PublishPath(UA(XHalf
τ ) ∩

(v∗,∞), v∗), where we have already shown UA(XHalf
τ )∩ (v∗,∞) = UA(XHalf

τ )∩ (v,∞) in our

proof that the action is orderly.

Next, we will prove that the action atXHalf
τ is checkpoint recurrent. To show this, we have

to show that π̃ does not fork a checkpoint when publishing at XHalf
τ and that if π̃ establishes

a checkpoint, it does not own any unpublished blocks greater than that checkpoint:

• π̃ does not fork a checkpoint when publishing at XHalf
τ : It has been shown that the

action is timeserving and at XHalf
τ we have v∗ ̸= C(XHalf

τ ). Therefore, this action
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necessarily forks a non-empty set of blocks. Additionally, since π is timeserving and

v ̸= C(B), we know that π’s action at B necessarily forks a non-empty set of blocks.

Note that the set of blocks forked by π̃ at XHalf
τ is a subset of the blocks forked by

π at B, plus some additional honest miner blocks. Since we have assumed that π is

checkpoint recurrent, none of the blocks forked by both π̃ and π may be checkpoints.

Then, since an honest miner’s block only becomes a checkpoint if it is published on

top of another checkpoint, none of the additional honest miner blocks forked by π̃ may

be checkpoints. So, the strategy π̃ does not fork any checkpoints.

• If π̃ establishes a checkpoint, it does not own any unpublished blocks greater than that

checkpoint: If π̃ establishes a checkpoint with this publish action, then the checkpoint

is some block in U(XHalf
τ ) ∩ (v,∞), such that the checkpoint is certainly greater than

v. But, by the nature of this publish action, following this action the strategy will not

own any unpublished blocks greater than v, and thus will not own any unpublished

blocks greater than the just-established checkpoint.

Therefore, the action at XHalf
τ is checkpoint recurrent.

Now, we will prove that from any state B handled by the second bullet point, the strategy

π̃ capitulates to B0 in finite expected time, which proves that π̃ is positive recurrent. Clearly,

the time at which π̃ capitulates to B0 is just τ , so this reduces to showing that E[τ ] < ∞.

This is shown by a coupling between the game and a random walk (St)t≥0 where St =

|TA(Xt) \ TA(B)| − |TH(Xt) \ TH(B)| such that S0 = 0 and there is a single boundary at

−(h(v∗)− h(v)) < 0 which is hit at Sτ . By Lemma C.8, the walk hits the boundary in finite

expected time and so E[τ ] <∞. Then, it is shown that π̃ is positive recurrent.

Finally, we will prove that the publish action taken at state XHalf
τ is elevated. Since the

action subsequently capitulates to B0, it is clear that the maximum block in the published

set reaches finality. Therefore, we need to show that there is no block greater than v∗ that
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the published set could instead be published on. The proof is by contradiction; suppose at

XHalf
τ there exists a block b such that v∗ ∈ A(b) \ {b} and b < minUA(XHalf

τ ) ∩ (v∗,∞) =

minUA(XHalf
τ )∩ (v,∞), where the equality was proven earlier. Then, by Claim E.1 since we

have already shown π̃ to be timeserving, orderly, LPM, and trimmed and S = {b ∈ V (B) |

v∗ ∈ A(b) \ {b}, b < minUA(XHalf
τ ) ∩ (v∗,∞)} ≠ ∅, we know that S ∩ A(C(XHalf

τ )) = S.

Then, let v∗∗ = maxS ∈ A(C(XHalf
τ )). So, we have that v∗ < v∗∗ < minUA(XHalf

τ )∩ (v,∞).

Additionally, since we have already shown that minQ = minUA(XHalf
τ ) ∩ (v,∞), we have

that v∗∗ < minQ. Since π̃ does not publish any blocks between B and XHalf
τ , if v∗∗ was not

in the block tree at state B, it must have been published by the honest miner. But since

v∗∗ < minQ, where minQ was certainly mined at or before state B, this would imply that

v∗∗ was hidden for some time before publishing, which we know the honest miner not to do

and so it must be the case that v∗∗ ∈ V (B). Furthermore, since v∗∗ ∈ A(C(XHalf
τ )), we also

know that we must have v∗∗ ∈ A(C(B)); otherwise, the honest miner forked the longest chain

sometime between B and XHalf
τ , which would violate the honest mining strategy. But, since

we find that v∗∗ is in A(C(B)) and v∗ < v∗∗ < minQ, this contradicts the fact that v∗ was

chosen to be the block of maximum height in A(C(B)) that minQ may validly be published

on. Therefore, such a v∗∗ must not exist and so the action is shown to be elevated.

So, we have shown that π̃ is a valid, timeserving, orderly, LPM, trimmed, opportunistic,

checkpoint recurrent, positive recurrent, and elevated strategy. Now, all that is left to be

shown is that Rev(π̃, α) ≥ Rev(π, α). We will show that at all states B where π takes

an action which is not elevated, V π̃
α,λ(B) ≥ V π

α,λ(B). Then, since π̃ copies π everywhere π

takes an elevated action, and states where π takes an elevated action either exclusively reach

states where π takes elevated actions before capitulating or reach some state where π takes

a non-elevated action before capitulating, this in turn implies that for any state B we have

V π̃
α,λ(B) ≥ V π

α,λ(B). If at all states B we have V π̃
α,λ(B) ≥ Vπ

α,λ(B), from Claim B.8, it directly

follows that Rev(π̃, α) ≥ Rev(π, α). So, let’s prove that at all states B where π takes an
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action which is not elevated, V π̃
α,λ(B) ≥ V π

α,λ(B).

First, we can rewrite V π̃
α,λ(B) as the following:

V π̃
α,λ(B) = E

[
rλ(X0, X

Half
τ ) + rλ(X

Half
τ , Xτ ) + V π̃

α,λ(Xτ ) | X0 = B
]

= E
[
rλ(X0, X

Half
τ ) + rλ(X

Half
τ , Xτ ) | X0 = B

]
= E

[
rλ(X0, X

Half
τ ) | X0 = B

]
+ E

[
rλ(X

Half
τ , Xτ ) | X0 = B

]
= E [−|TH(Xτ ) \ TH(B)|λ | X0 = B] + E

[
rλ(X

Half
τ , Xτ ) | X0 = B

]
= E [− (|TA(Xτ ) \ TA(B)|+ h(v∗)− h(v))λ | X0 = B] + E

[
rλ(X

Half
τ , Xτ ) | X0 = B

]
= −E [|TA(Xτ ) \ TA(B)| | X0 = B]λ− (h(v∗)− h(v))λ+ E

[
rλ(X

Half
τ , Xτ ) | X0 = B

]
= −(h(v∗)− h(v))( α

1−2α
)λ− (h(v∗)− h(v))λ+ E

[
rλ(X

Half
τ , Xτ ) | X0 = B

]
= −(h(v∗)− h(v))

(
( α
1−2α

) + 1
)
λ+ E

[
rλ(X

Half
τ , Xτ ) | X0 = B

]
The first line and second lines are because we know π̃ waits at every step until τ and

capitulates after publishing at XHalf
τ such that V π̃

α,λ(Xτ ) = 0 The third line is due to the

linearity of expectation. The fourth line is because only the honest miner publishes blocks

on the longest chain from X0 = B to XHalf
τ . The fifth line is from the definition of τ . The

sixth line is again the linearity of expectation. The seventh line is due to coupling the game

with a random walk (similar to the proof that the strategy π̃ is positive recurrent) then using

Lemma C.8 to express the expected number of increments in a random walk with a single

boundary. The eighth line is algebra.

Now, we want to express rλ(X
Half
τ , Xτ ) much the same way as we expressed rλ(B,B′)

prior in the proof. This time, no blocks are forked from the longest chain at heights ≤ h(v∗),

since we are publishing on v∗ instead of v. Additionally, although this action at XHalf
tau forks

blocks at heights ≥ h(C(B))+1 which necessarily do not exist at B and so are not forked by

π, we know that Hi(X
Half
τ ) ∈ TH(X

Half
τ ) since only the honest miner publishes between B
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and XHalf
τ . As before, any block that exceeds h(C(XHalf

τ )) at Xτ must have been published

by the attacker. So, we may write rλ(X
Half
τ , Xτ ) as the sum of three parts:

rλ(X
Half
τ , Xτ ) = h(C(B))∑

i=h(v∗)+1

1Hi(Xτ )∈TA(Xτ ) − 1Hi(XHalf
τ )∈TA(XHalf

τ )

 (1− λ)

−

 h(C(B))∑
i=h(v∗)+1

1Hi(Xτ )∈TH(Xτ ) − 1Hi(XHalf
τ )∈TH(XHalf

τ )

λ

+

 h(C(XHalf
τ ))∑

i=h(C(B))+1

1Hi(Xτ )∈TA(Xτ ) − 1Hi(XHalf
τ )∈TA(XHalf

τ )

 (1− λ)

−

 h(C(XHalf
τ ))∑

i=h(C(B))+1

1Hi(Xτ )∈TH(Xτ ) − 1Hi(XHalf
τ )∈TH(XHalf

τ )

λ

+

 h(C(Xτ ))∑
i=h(C(XHalf

τ ))+1

1Hi(Xτ )∈TA(Xτ )

 (1− λ)−

 h(C(Xτ ))∑
i=h(C(XHalf

τ ))+1

1Hi(Xτ )∈TH(Xτ )

λ

=

 h(C(B))∑
i=h(v∗)+1

1− 1Hi(XHalf
τ )∈TA(XHalf

τ )

 (1− λ)−

 h(C(B))∑
i=h(v∗)+1

−1Hi(XHalf
τ )∈TH(XHalf

τ )

λ

+

 h(C(XHalf
τ ))∑

i=h(C(B))+1

1− 0

 (1− λ)−

 h(C(XHalf
τ ))∑

i=h(C(B))+1

0− 1

λ

+ (h(C(Xτ ))− h(C(XHalf
τ )))(1− λ)

=

 h(C(B))∑
i=h(v∗)+1

1− 1Hi(XHalf
τ )∈TA(XHalf

τ )

+ (h(C(XHalf
τ ))− h(C(B))) + (h(C(Xτ ))− h(C(XHalf

τ )))(1− λ)

Now, we apply the expectation to rλ(X
Half
τ , Xτ ); several several quantities are actually
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constant and so fall out of the expectation:

E[rλ(XHalf
τ , Xτ ) | X0 = B] =

 h(C(B))∑
i=h(v∗)+1

1− 1Hi(XHalf
τ )∈TA(XHalf

τ )


+ (E[h(C(XHalf

τ )) | X0 = B]− h(C(B)))

+ (E[h(C(Xτ )) | X0 = B]− E[h(C(XHalf
τ )) | X0 = B])(1− λ)

But, the quantities E[h(C(XHalf
τ )) | X0 = B] and E[h(C(Xτ )) | X0 = B] can easily be

calculated by coupling this with a random walk as we have done twice already:

E[h(C(XHalf
τ )) | X0 = B] = h(C(B)) + E [|TH(Xτ ) \ TH(B)| | X0 = B] =

= h(C(B)) + (h(v∗)− h(v))
(
( α
1−2α

) + 1
)

E[h(C(Xτ )) | X0 = B] = h(v∗) + E[|UA(XHalf
τ ) ∩ (v,∞)| | X0 = B]

= h(v∗) + E[| (UA(B) ∩ (v,∞)) ∪ (TA(Xτ ) \ TA(B)) | | X0 = B]

= h(v∗) + |UA(B) ∩ (v,∞)|+ E[|TA(Xτ ) \ TA(B)| | X0 = B]

= h(v∗) + |Q|+ E[|TA(Xτ ) \ TA(B)| | X0 = B]

= h(v∗) + h(C(B′))− h(v) + (h(v∗)− h(v))( α
1−2α

)

Where the last line in the derivation of the second quantity witnesses h(v)+ |Q| = h(C(B′)).

Putting this altogether, we can express the value of state B to strategy π̃:

V π̃
α,λ(B) =

− (h(v∗)− h(v))
(
( α
1−2α

) + 1
)
λ

+

 h(C(B))∑
i=h(v∗)+1

1− 1Hi(XHalf
τ )∈TA(XHalf

τ )


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+ (h(C(B)) + (h(v∗)− h(v))
(
( α
1−2α

) + 1
)
− h(C(B)))

+ (h(v∗) + h(C(B′))− h(v) + (h(v∗)− h(v))( α
1−2α

)−
(
h(C(B)) + (h(v∗)− h(v))

(
( α
1−2α

) + 1
))
)(1− λ)

= (h(v∗)− h(v))(( α
1−2α

) + 1)(1− λ) +

 h(C(B))∑
i=h(v∗)+1

1− 1Hi(XHalf
τ )∈TA(XHalf

τ )

+ (h(C(B′))− h(C(B)))(1− λ)

Now, for the final result, we will show that V π̃
α,λ(B)− Vπ

α,λ(B) ≥ 0:

V π̃
α,λ(B)− Vπ

α,λ(B) = (h(v∗)− h(v))(( α
1−2α

) + 1)(1− λ)−

 h(v∗)∑
i=h(v)+1

1− 1Hi(B)∈TA(B)


≥ (h(v∗)− h(v))(( α

1−2α
) + 1)(1− λ)− (h(v∗)− h(v))

= (h(v∗)− h(v))(( α
1−2α

))(1− λ)− (h(v∗)− h(v))λ

≥ 0

Here, we have used the fact that
(∑h(v∗)

i=h(v)+1 1− 1Hi(B)∈TA(B)

)
≤ h(v∗) − h(v), since each

summand is≤ 1. The last inequality is due to Mathematica [5], where the statement holds for

any 0 < α < 1
2
, λ ≤ α

1−α
, and h(v∗)−h(v) ≥ 1. Thus, it follows that Rev(π̃, α) ≥ Rev(π, α)

and so the proof is complete.

E.2 Omitted Proofs from Section 5.2

Proof of Theorem 5.5. Let π be a timeserving, orderly, LPM, trimmed, opportunistic, check-

point recurrent, positive recurrent strategy, and elevated strategy. If π is also patient, then let

π̃ = π and the proof is complete, since clearly Rev(π̃, α) = Rev(π, α) and π̃ is timeserving,

orderly, LPM, trimmed, opportunistic, checkpoint recurrent, positive recurrent, elevated,

and patient. If π is not patient, then with nonzero probability, π takes some action which

is not patient. That is, there exists a state B that occurs with nonzero probability where π
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takes an action PublishPath(Q, v) such that

• for subsequent state B′ which follows taking action PublishPath(Q, v) at B, we have

h(C(B′)) − h(C(B)) ̸= 1. That is, the action PublishPath(Q, v) does not increase the

height of the longest chain by exactly one.

• and, after taking action PublishPath(Q, v), maxQ reaches finality with respect to π

First, note that by the fact that PublishPath(Q, v) is assumed to be timeserving, h(C(B′))−

h(C(B)) ≥ 1 since maxQ must be the unique longest chain. So, the first condition reduces

to h(C(B′))− h(C(B)) > 1.

Before proposing an alternate strategy, let’s calculate the value of state B to π which

plays this action PublishPath(Q, v). Let B′ denote the subsequent state after π takes action

PublishPath(Q, v) at B which is not patient. Since maxQ reaches finality with respect to

π and π is opportunistic by assumption, then Q = UA(B) ∩ (v,∞). Additionally, from B′

onward, publishing a block ≤ v would require forking block maxQ, but since we know maxQ

has reached finality with respect to π, this will never happen. Therefore, since the attacker

must give up on all their unpublished blocks ≤ v and owns no unpublished blocks > v at

B′, an optimal strategy capitulates from B′ to B0, or Vα(B′) = Vα(B0) = 0. So, if we let

λ = Rev(π, α), we can express the value of state B to strategy π as

Vπ
α,λ(B) = rλ(B,B′) + Vπ

α,λ(B
′) ≤ rλ(B,B′) + Vα(B′) = rλ(B,B′) + Vα(B0) = rλ(B,B′)

Now, we will express rλ(B,B′), the reward to π of taking action PublishPath(Q, v) at B,

in finer detail by looking at blocks in the longest chain before and after the action. Since

this action is LPM, no blocks are forked from the longest chain at heights ≤ h(v). In other

words, Hi(B) = Hi(B
′) for all i ≤ h(v). Next, we know that Hi(B

′) ∈ TA(B) for all i > h(v)

since the action is timeserving such that the fork it creates ends up being in the longest path.
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However, we cannot be sure of the membership of Hi(B) for most h(v) < i < h(C(B)) (with

the exception of possibly Hh(v)+1(B) ∈ TA(B) since we know the action is trimmed). So, we

may write rλ(B,B′) as the sum of two parts (splitting heights > h(v) into two disjoint sets

for reasons that will become clearer later):

rλ(B,B′) =

+

 h(C(B))∑
i=h(v)+1

1Hi(B′)∈TA(B′) − 1Hi(B)∈TA(B)

 (1− λ)−

 h(C(B))∑
i=h(v)+1

1Hi(B′)∈TH(B′) − 1Hi(B)∈TH(B)

λ

+

 h(C(B′))∑
i=h(C(B))+1

1Hi(B′)∈TA(B′)

 (1− λ)−

 h(C(B′))∑
i=h(C(B))+1

1Hi(B′)∈TH(B′)

λ

=

 h(C(B))∑
i=h(v)+1

1− 1Hi(B)∈TA(B)

 (1− λ)−

 h(C(B))∑
i=h(v)+1

−1Hi(B)∈TH(B)

λ

+

 h(C(B′))∑
i=h(C(B))+1

1

 (1− λ)−

 h(C(B′))∑
i=h(C(B))+1

0

λ

=

 h(C(B))∑
i=h(v)+1

1− 1Hi(B)∈TA(B)

+ (h(C(B′))− h(C(B))) (1− λ)

We will revisit this reward later in the proof.

Now, define a timeserving, orderly, LPM, trimmed, opportunistic, checkpoint recurrent,

positive recurrent, elevated, and patient strategy π̃:

• π̃(B) = π(B) for all states where π takes a patient action.

• At state X0 = B where π takes action PublishPath(Q, v) which is not patient, π̃ plays
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Wait until the first time step τ where (all variables refer to the game under π̃)

τ = min{t ≥ 1: |TA(Xt) \ TA(B)|+ h(C(B′))− h(C(B))− 1 = |TH(Xt) \ TH(B)|}

for B′ the subsequent state if π plays action PublishPath(Q, v) at B. Then, at time

step τ , π̃ plays PublishPath(UA(XHalf
τ ) ∩ (v,∞), v), and subsequently capitulates to

B0.

Clearly, actions taken at states B handled by the first bullet point are valid, timeserving,

orderly, LPM, trimmed, opportunistic, checkpoint recurrent, positive recurrent, and elevated

by the assumption that π meets these criteria and furthermore patient since this is the

condition in which we use the first bullet point. Additionally, since the second bullet point

never capitulates to any state handled by the first bullet point, we can see that no loops

exist that would complicate the interplay between states handled by the first bullet point and

states handled by the second bullet point. So, to show that π̃ is timeserving, orderly, LPM,

trimmed, opportunistic, checkpoint recurrent, positive recurrent, elevated, and patient, it

only remains to be shown that all actions taken at states B handled by the second bullet

point are valid, timeserving, orderly, LPM, trimmed, opportunistic, checkpoint recurrent,

positive recurrent, elevated, and patient in our definition of π̃. Still more, since the action

Wait trivially satisfies all criterion, we can focus on the publish action that occurs at time

step τ .

First, the action is valid since taking the intersection of UA(XHalf
τ ) with (v,∞) ensures

no blocks ≤ v are in the published set, and so v < minUA(XHalf
τ ) ∩ (v,∞).

To show that the action is timeserving, we have to show that, following the publish

action, the maximum block in the published set is the unique longest chain. Recall that we

have h(C(B′)) = h(v) + |Q| = h(v) + (UA(B) ∩ (v,∞)), where the last equality is because

the strategy is opportunistic. Additionally, by how we defined π̃, we know that at XHalf
τ we

190



publish UA(XHalf
τ ) ∩ (v,∞) = (UA(B) ∩ (v,∞)) ∪ (TA(Xτ ) \ TA(B)). At the same time, at

XHalf
τ the height of the longest chain has increased by |TH(Xτ ) \ TH(B)|, or h(C(XHalf

τ )) =

h(C(B)) + |TH(Xτ ) \ TH(B)| since the honest miner publishes every block they mine. The

following chain of inequalities shows that the maximum block in the published set indeed

reaches height (strictly) greater than h(C(XHalf
τ )):

h(v) + |UA(XHalf
τ ) ∩ (v,∞)| = h(v) + | (UA(B) ∩ (v,∞)) ∪ (TA(Xτ ) \ TA(B)) |

= h(v) + |UA(B) ∩ (v,∞)|+ |TA(Xτ ) \ TA(B)|

= h(C(B′)) + |TA(Xτ ) \ TA(B)|

= h(C(B′))− h(C(B))− 1 + h(C(B)) + 1 + |TA(Xτ ) \ TA(B)|

= h(C(B)) + 1 + |TH(Xτ ) \ TH(B)|

= h(C(XHalf
τ )) + 1

> h(C(XHalf
τ ))

The first line is due to the definition of the strategy π̃. The second line is because UA(B) ∩

(v,∞) and TA(Xτ )\TA(B) are disjoint. The third and fourth line are algebra. The fifth line

is by definition of τ . The sixth line is by definition of the honest mining strategy and the

fact that π̃ does not publish between B and XHalf
τ .The last line is algebra. Therefore, it is

shown that the action is timeserving.

Next, we want to show that this action is orderly. This is easy because trivially the

minimum |UA(XHalf
τ ) ∩ (v,∞)| blocks in the set UA(XHalf

τ ) ∩ (v,∞) is just the set itself,

such that the action at XHalf
τ may be rewritten as

PublishPath(
(|UA(XHalf

τ )∩(v,∞)|)
min

(
UA(XHalf

τ ) ∩ (v,∞)
)
, v)

which is orderly be definition.
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To show that the action is LPM, consider that since π is LPM by assumption, we have

that v ∈ A(C(B)). Then, since only the honest miner publishes between B and XHalf
τ such

that we can be sure the longest chain is never forked, we must have that C(B) ∈ A(C(XτHalf))

and so v ∈ A(C(B)) ⊆ A(C(XHalf
τ )).

To show that the action is trimmed, first note that we have already shown v ∈ A(C(XHalf
τ )).

Next, we will show that v ̸= C(XHalf
τ ). If we can show that at least one block is published

by the honest miner between B and XHalf
τ , then this immediately follows. The number of

blocks published by the honest miner between B and XHalf
τ is just |TH(Xτ ) \ TH(B)|. So,

consider the following derivation:

|TH(Xτ ) \ TH(B)| = |TA(Xτ ) \ TA(B)|+ h(C(B′))− h(C(B))− 1

≥ |TA(Xτ ) \ TA(B)|+ 1

≥ 1

On the first line, we use the definition of τ . On the second line we use the fact that

h(C(B′)) − h(C(B)) ≥ 2 by the fact that the action PublishPath(Q, v) is not patient. The

final line is due to the nonnegativity of the number of blocks mined by the attacker between

B and XHalf
τ . Therefore, we find that indeed the honest miner publishes at least one block

between B and XHalf
τ and so it is shown that v ̸= C(XHalf

τ ). Now, to show the publish

action is trimmed, the proof obligation is to show that the unique block b ∈ A(C(XHalf
τ ))

at state XHalf
τ with an edge to v was created by the honest miner. The proof is by case

analysis:

• v = C(B): Since the only miner which publishes between B and XHalf
τ is the honest

miner, the block published immediately on C(B) (bound to exist by the discussion

above) must be owned by the honest miner and so the action is shown to be trimmed.

192



• v ̸= C(B): Then, at state B, there exists a unique block b ∈ A(C(B)) with an edge to

v. Since we have already argued that the honest miner never forks the longest chain,

A(C(B)) ⊆ A(C(XHalf
τ )) such that the unique block b ∈ A(C(XHalf

τ )) with an edge to

v at state XHalf
τ is the same block as the unique block b ∈ A(C(B)) with an edge to v

at state B. Since this is the same block at both state B and XHalf
τ , this block must

be owned by the honest miner or else it contradicts the fact that π which took action

PublishPath(Q, v) at B which forks this block is trimmed.

Therefore, it is shown that the action is trimmed.

The action is opportunistic by the fact that how we have written it is exactly how an

opportunistic action is defined.

Next, we will prove that the action atXHalf
τ is checkpoint recurrent. To show this, we have

to show that π̃ does not fork a checkpoint when publishing at XHalf
τ and that if π̃ establishes

a checkpoint, it does not own any unpublished blocks greater than that checkpoint:

• π̃ does not fork a checkpoint when publishing at XHalf
τ : It has been shown that the

action is timeserving and at XHalf
τ we have v ̸= C(XHalf

τ ). Note that the set of blocks

forked by π̃ at XHalf
τ is a subset of the blocks forked by π at B (if PublishPath(Q, v)

forks any), plus some additional honest miner blocks since these are the only blocks

published between B andXHalf
τ . Since we have assumed that π is checkpoint recurrent,

none of the blocks forked by both π̃ and π may be checkpoints. Then, since an honest

miner’s block only becomes a checkpoint if it is published on top of another checkpoint,

if there is some block forked by both π̃ and π, then none of the additional honest

miner blocks forked by π̃ may be checkpoints. On the other hand, we may find that

PublishPath(Q, v) forks no blocks, meaning v = C(B). If v = C(B) is not a checkpoint,

then once again we are done because an honest miner block only becomes a checkpoint

if it is published on top of another checkpoint. Even if v = C(B) is a checkpoint, the

honest miner blocks published between B and XHalf
τ are still not checkpoints because
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for any v′ published as a successor of v at some state B′′ after B and prior to XHalf
τ ,

we have minQ ∈ UA(B
′′)∩ (v, v′] while A(C(B′′))∩ (v, v′]∩ TA(B

′′) = ∅, which implies

|(UA(B
′′) ∩ (v, v′])| ≥ 1 > 0 = |A(C(B′′)) ∩ (v, v′] ∩ TA(B

′′)| such that v′ fails the

definition of a checkpoint. The membership minQ ∈ (UA(B
′′) ∩ (v, v′]) is because

v < minQ by the fact that PublishPath(Q, v) is a valid action, minQ < v′ since v′ was

mined by the honest miner sometime after B, and minQ ∈ UA(B
′′) since π̃ doesn’t

publish any blocks in Q until XHalf
τ . The equality A(C(B′′)) ∩ (v, v′] ∩ TA(B

′′) = ∅

follows because π̃ does not publish any blocks between B and XHalf
τ and the honest

miner does not fork the longest chain such that any block with a timestamp in (v, v′]

owned by the attacker in the longest chain must have been in the longest chain prior to

B. However, this would contradict the fact that v = C(B) and so we know that this set

must be empty. Then, since we have shown that the honest blocks published between

B and XHalf
τ never establish checkpoints, it is shown that π̃ never forks a checkpoint

when publishing at XHalf
τ .

• If π̃ establishes a checkpoint, it does not own any unpublished blocks greater than that

checkpoint: If π̃ establishes a checkpoint with this publish action, then the checkpoint

is some block in U(XHalf
τ ) ∩ (v,∞), such that the checkpoint is certainly greater than

v. But, by the nature of this publish action, following this action the strategy will not

own any unpublished blocks greater than v, and thus will not own any unpublished

blocks greater than the just-established checkpoint.

Therefore, the action at XHalf
τ is checkpoint recurrent.

Now, we will prove that from any state B handled by the second bullet point, the strategy

π̃ capitulates to B0 in finite expected time, which proves that π̃ is positive recurrent. Clearly,

the time at which π̃ capitulates to B0 is just τ , so this reduces to showing that E[τ ] < ∞.

This is shown by a coupling between the game and a random walk (St)t≥0 where St =
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|TA(Xt) \ TA(B)| − |TH(Xt) \ TH(B)| such that S0 = 0 and there is a single boundary at

−(h(C(B′))−h(C(B))−1) < 0 which is hit at Sτ . By Lemma C.8, the walk hits the boundary

in finite expected time and so E[τ ] <∞. Then, it is shown that π̃ is positive recurrent.

Next, we will prove that the publish action taken at state XHalf
τ is elevated. Since the

action subsequently capitulates to B0, it is clear that the maximum block in the published

set reaches finality. Therefore, we need to show that there is no block greater than v that

the published set could instead be published on. The proof is by contradiction; suppose

at XHalf
τ there exists a block b such that v ∈ A(b) \ {b} and b < minUA(XHalf

τ ) ∩ (v,∞).

First, we know that b /∈ V (B) ∩ V (XHalf
τ ) since this would contradict the fact that π’s

action PublishPath(Q, v) is elevated at B. So, b must be one of the blocks published by the

honest miner between states B and XHalf
τ . However, since this block is clearly mined after

minUA(XHalf
τ ) ∩ (v,∞) = minQ, it cannot be the case that b < minUA(XHalf

τ ) ∩ (v,∞).

So, the assumption must be false and b must not exist such that the action is elevated.

Finally, we will show that the action at XHalf
τ is patient. Actually, this was already shown

by way of our proof that π̃ is timeserving. Note that Xτ is the state which immediately

follows XHalf
τ . Then, h(C(Xτ )) = h(v) + |UA(XHalf

τ ) ∩ (v,∞)| since |UA(XHalf
τ ) ∩ (v,∞)|

blocks are published on v and the action is timeserving such that all these published blocks

immediately enter the longest path. Then, the proof that the action is timeserving showed

that h(C(Xτ )) = h(v) + |UA(XHalf
τ ) ∩ (v,∞)| = h(C(XHalf

τ )) + 1, which is exactly the

definition of a patient action.

So, we have shown that π̃ is a valid, timeserving, orderly, LPM, trimmed, opportunistic,

checkpoint recurrent, positive recurrent, elevated, and patient strategy. Now, all that is left

to be shown is that Rev(π̃, α) ≥ Rev(π, α). We will show that at all states B where π

takes an action which is not patient, V π̃
α,λ(B) ≥ V π

α,λ(B). Then, since π̃ copies π everywhere

π takes a patient action, and states where π takes a patient action either exclusively reach

states where π takes patient actions before capitulating or reach some state where π takes
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a non-patient action before capitulating, this in turn implies that for any state B we have

V π̃
α,λ(B) ≥ V π

α,λ(B). If at all states B we have V π̃
α,λ(B) ≥ V π

α,λ(B), from Claim B.8, it directly

follows that Rev(π̃, α) ≥ Rev(π, α). So, let’s prove that at all states B where π takes an

action which is not patient, V π̃
α,λ(B) ≥ V π

α,λ(B).

First, we can rewrite V π̃
α,λ(B) as the following:

V π̃
α,λ(B) = E

[
rλ(X0, X

Half
τ ) + rλ(X

Half
τ , Xτ ) + V π̃

α,λ(Xτ ) | X0 = B
]

= E
[
rλ(X0, X

Half
τ ) + rλ(X

Half
τ , Xτ ) | X0 = B

]
= E

[
rλ(X0, X

Half
τ ) | X0 = B

]
+ E

[
rλ(X

Half
τ , Xτ ) | X0 = B

]
= E [−|TH(Xτ ) \ TH(B)|λ | X0 = B] + E

[
rλ(X

Half
τ , Xτ ) | X0 = B

]
= E [− (|TA(Xτ ) \ TA(B)|+ h(C(B′))− h(C(B))− 1)λ | X0 = B] + E

[
rλ(X

Half
τ , Xτ ) | X0 = B

]
= −E [|TA(Xτ ) \ TA(B)| | X0 = B]λ− (h(C(B′))− h(C(B))− 1)λ+ E

[
rλ(X

Half
τ , Xτ ) | X0 = B

]
= −(h(C(B′))− h(C(B))− 1)( α

1−2α
)λ− (h(C(B′))− h(C(B))− 1)λ+ E

[
rλ(X

Half
τ , Xτ ) | X0 = B

]
= −(h(C(B′))− h(C(B))− 1)

(
( α
1−2α

) + 1
)
λ+ E

[
rλ(X

Half
τ , Xτ ) | X0 = B

]
The first line and second lines are because we know π̃ waits at every step until τ and

capitulates after publishing at XHalf
τ such that V π̃

α,λ(Xτ ) = 0 The third line is due to the

linearity of expectation. The fourth line is because only the honest miner publishes blocks

on the longest chain from X0 = B to XHalf
τ . The fifth line is from the definition of τ . The

sixth line is again the linearity of expectation. The seventh line is due to coupling the game

with a random walk (similar to the proof that the strategy π̃ is positive recurrent) then using

Lemma C.8 to express the expected number of increments in a random walk with a single

boundary. The eighth line is algebra.

Now, we want to express rλ(X
Half
τ , Xτ ) much the same way as we expressed rλ(B,B′)

prior in the proof. Just the same as rλ(B,B′), no blocks are forked from the longest chain
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at heights ≤ h(v). Additionally, although this action at XHalf
tau forks blocks at heights

≥ h(C(B))+ 1 which necessarily do not exist at B and so are not forked by π, we know that

Hi(X
Half
τ ) ∈ TH(X

Half
τ ) since only the honest miner publishes between B and XHalf

τ . As

before, any block that exceeds h(C(XHalf
τ )) at Xτ must have been published by the attacker.

So, we may write rλ(X
Half
τ , Xτ ) as the sum of three parts:

rλ(X
Half
τ , Xτ ) = h(C(B))∑

i=h(v)+1

1Hi(Xτ )∈TA(Xτ ) − 1Hi(XHalf
τ )∈TA(XHalf

τ )

 (1− λ)

−

 h(C(B))∑
i=h(v)+1

1Hi(Xτ )∈TH(Xτ ) − 1Hi(XHalf
τ )∈TH(XHalf

τ )

λ

+

 h(C(XHalf
τ ))∑

i=h(C(B))+1

1Hi(Xτ )∈TA(Xτ ) − 1Hi(XHalf
τ )∈TA(XHalf

τ )

 (1− λ)

−

 h(C(XHalf
τ ))∑

i=h(C(B))+1

1Hi(Xτ )∈TH(Xτ ) − 1Hi(XHalf
τ )∈TH(XHalf

τ )

λ

+

 h(C(Xτ ))∑
i=h(C(XHalf

τ ))+1

1Hi(Xτ )∈TA(Xτ )

 (1− λ)−

 h(C(Xτ ))∑
i=h(C(XHalf

τ ))+1

1Hi(Xτ )∈TH(Xτ )

λ

=

 h(C(B))∑
i=h(v)+1

1− 1Hi(XHalf
τ )∈TA(XHalf

τ )

 (1− λ)−

 h(C(B))∑
i=h(v)+1

−1Hi(XHalf
τ )∈TH(XHalf

τ )

λ

+

 h(C(XHalf
τ ))∑

i=h(C(B))+1

1− 0

 (1− λ)−

 h(C(XHalf
τ ))∑

i=h(C(B))+1

0− 1

λ

+ (h(C(Xτ ))− h(C(XHalf
τ )))(1− λ)
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=

 h(C(B))∑
i=h(v)+1

1− 1Hi(XHalf
τ )∈TA(XHalf

τ )

+ (h(C(XHalf
τ ))− h(C(B))) + (1− λ)

Here, the last line uses the fact that h(C(Xτ )) − h(C(XHalf
τ )) = 1 by the fact that the

strategy is patient. Now, we apply the expectation to rλ(X
Half
τ , Xτ ); several quantities are

actually constant and so fall out of the expectation:

E[rλ(XHalf
τ , Xτ ) | X0 = B] =

 h(C(B))∑
i=h(v)+1

1− 1Hi(XHalf
τ )∈TA(XHalf

τ )


+ (E[h(C(XHalf

τ )) | X0 = B]− h(C(B)))

+ (1− λ)

But, the quantities E[h(C(XHalf
τ )) | X0 = B] can easily be calculated by coupling this with

a random walk as we have done twice already:

E[h(C(XHalf
τ )) | X0 = B] = h(C(B)) + E [|TH(Xτ ) \ TH(B)| | X0 = B]

= h(C(B)) + (h(C(B′))− h(C(B))− 1)
(
( α
1−2α

) + 1
)

Putting this altogether, we can express the value of state B to strategy π̃:

V π̃
α,λ(B) =

− (h(C(B′))− h(C(B))− 1)
(
( α
1−2α

) + 1
)
λ

+

 h(C(B))∑
i=h(v)+1

1− 1Hi(XHalf
τ )∈TA(XHalf

τ )


+ (h(C(B)) + (h(C(B′))− h(C(B))− 1)

(
( α
1−2α

) + 1
)
− h(C(B)))

+ (1− λ)
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= (h(C(B′))− h(C(B))− 1)
(
( α
1−2α

) + 1
)
(1− λ) +

 h(C(B))∑
i=h(v)+1

1− 1Hi(XHalf
τ )∈TA(XHalf

τ )

+ (1− λ)

Now, for the final result, we will show that V π̃
α,λ(B)− Vπ

α,λ(B) ≥ 0:

V π̃
α,λ(B)− Vπ

α,λ(B) = (h(C(B′))− h(C(B))− 1)
(
( α
1−2α

) + 1
)
(1− λ) + (1− λ)

− (h(C(B′))− h(C(B)))(1− λ)

= (h(C(B′))− h(C(B))− 1)( α
1−2α

)(1− λ)

≥ ( α
1−2α

)(1− λ)

≥ 0

Here, the second-to-last line uses the fact that h(C(B′))− h(C(B)) ≥ 2 by assumption that

π’s action at B is not patient. The last line is because 0 < α < 1
2
and λ < α

1−α
ensures that

both α
1−2α

> 0 and 1 − λ > 0, such that their product is surely positive. Thus, it follows

that Rev(π̃, α) ≥ Rev(π, α) and so the proof is complete.

E.3 Omitted Proofs from Section 5.3

Proof of Theorem 5.8. Note that for all α, an optimal strategy which is timeserving, orderly,

LPM, trimmed, opportunistic, checkpoint recurrent, positive recurrent, elevated, and patient

is bound to exist by Theorem 5.5. Instead of proving the theorem directly, we will actually

show that an optimal strategy which meets the criteria above must also be thrifty. In turn,

this implies the theorem, since we can let the strategy π̃ in the theorem simply be an optimal

strategy which is timeserving, orderly, LPM, trimmed, opportunistic, checkpoint recurrent,

positive recurrent, elevated, patient, and thrifty so that clearly Rev(π̃, α) ≥ Rev(π, α) for

any π, by optimality.

The proof is by contradiction; suppose that for some α there is an optimal strategy π∗
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which is timeserving, orderly, LPM, trimmed, opportunistic, checkpoint recurrent, positive

recurrent, elevated, and patient but not thrifty. Then with nonzero probability, π∗ takes

some action which is not thrifty. That is, there exists a state B that occurs with nonzero

probability where π∗ takes an action PublishPath(Q, v) such that

• for subsequent state B′ which follows taking action PublishSet(Q, v) at B, there exists

Q+, v+ such that

– Q ⊂ Q+

– Q+ \Q ⊆ (UA(B′) ∩ (0,minQ))

– PublishPath(Q+, v+) is a valid checkpoint recurrent action at B that yields state

B+

– |A(C(B′)) ∩ TA(B
′)| < |A(C(B+)) ∩ TA(B

+)|

• and, after taking action PublishPath(Q, v), maxQ reaches finality with respect to π∗

Let’s calculate the value of state B to π∗ which plays PublishPath(Q, v). Let λ∗ =

Rev(π∗, α) and let B′ denote the subsequent state after π∗ takes action PublishPath(Q, v) at

B which is not thrifty. Since maxQ reaches finality with respect to π∗ and π∗ is opportunistic

by assumption, then Q = UA(B)∩ (v,∞). Additionally, from B′ onward, publishing a block

≤ v would require forking block maxQ, but since we know maxQ has reached finality with

respect to π∗, this will never happen. Therefore, since the attacker must give up on all their

unpublished blocks ≤ v and owns no unpublished blocks > v at B′, optimal strategy π∗

capitulates from B′ to B0, or Vπ∗

α,λ∗(B′) = Vπ∗

α,λ∗(B0) = 0. So, we can express the value of

state B to strategy π∗ as

Vπ∗

α,λ∗(B) = rλ∗(B,B′) + Vπ∗

α,λ∗(B′)

≤ rλ∗(B,B′) + Vα(B′)
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= rλ∗(B,B′) + Vα(B0)

= rλ∗(B,B′)

= (|A(C(B′)) ∩ TA(B
′)| − |A(C(B)) ∩ TA(B)|) (1− λ∗)

− (|A(C(B′)) ∩ TH(B
′)| − |A(C(B)) ∩ TH(B)|)λ∗

We will revisit this reward later in the proof. Now, define a checkpoint recurrent, positive

recurrent strategy π∗∗:

• π∗∗(B) = π∗(B) for all states where π∗ takes a thrifty action.

• At state B where π∗ takes action PublishPath(Q, v) which is not thrifty, π∗∗ takes action

PublishPath(Q∗, v∗) where Q∗, v∗ are any choice of Q+, v+ satisfying the properties

above, bound to exist because PublishPath(Q, v) is not thrifty. Then, π∗∗ capitulates

to B0.

Clearly, actions taken at states B handled by the first bullet point are valid, checkpoint

recurrent, and positive recurrent by the assumption that π∗ meets these criteria and further-

more thrifty since this is the condition in which we use the first bullet point. So, we are just

hoping to show that at all states handled by the second bullet point π∗∗ are valid, checkpoint

recurrent and positive recurrent. Trivially, as promised by the selection of Q∗, v∗, the action

PublishPath(Q∗, v∗) is valid and checkpoint recurrent. Since π∗∗ immediately capitulates to

B0 after the action, we also easily find that the action is positive recurrent. So, it is shown

that π∗∗ is indeed a valid, checkpoint recurrent, positive recurrent strategy.

Now, we may derive the contradiction by showing that at all states B where π∗ takes

an action which is not thrifty, Vπ∗∗

α,λ∗(B) > V π∗

α,λ∗(B). Since we have assumed that π∗ is an

optimal positive recurrent strategy and λ∗ = Rev(π∗, α), this would contradict Lemma B.9

(Bellman’s Principle of Optimality) and so we would conclude that π∗ cannot be optimal.

So, let’s rewrite Vπ∗∗

α,λ∗(B) as the following, where we use B+ to denote the state following
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action PublishPath(Q∗, v∗):

Vπ∗∗

α,λ∗(B) = rλ∗(B,B+) + Vπ∗∗

α,λ∗(B+)

= rλ∗(B,B+) + Vπ∗∗

α,λ∗(B0)

= rλ∗(B,B+)

=
(
|A(C(B+)) ∩ TA(B

+)| − |A(C(B)) ∩ TA(B)|
)
(1− λ∗)

−
(
|A(C(B+)) ∩ TH(B

+)| − |A(C(B)) ∩ TH(B)|
)
λ∗

Now, for the final result, we will show that Vπ∗∗

α,λ∗(B)− Vπ∗

α,λ∗(B) > 0:

Vπ∗∗

α,λ∗(B)− Vπ∗

α,λ∗(B) =
(
|A(C(B+)) ∩ TA(B

+)| − |A(C(B′)) ∩ TA(B
′)|
)
(1− λ∗)

−
(
|A(C(B+)) ∩ TH(B

+)| − |A(C(B′)) ∩ TH(B
′)|
)
λ∗

> −
(
|A(C(B+)) ∩ TH(B

+)| − |A(C(B′)) ∩ TH(B
′)|
)
λ∗

≥ 0

Note that for 0 < α < 1
2
and 0 ≤ λ∗ ≤ α

1−α
, we have 1 − λ∗ ≥ 0. Then, on the second line

we have used the fact that |A(C(B+)) ∩ TH(B
+)| > |A(C(B′)) ∩ TH(B

′)| by the definition

of Q∗, v∗. Finally, on the third line we have used the fact that |A(C(B+)) ∩ TH(B
+)| ≤

|A(C(B′)) ∩ TH(B
′)| since PublishPath(Q∗, v∗) forks a strict superset of the blocks forked

by PublishPath(Q, v). To prove this, we just have to prove that v∗ < v. By definition, Q∗

contains some block less than minQ, or minQ∗ < minQ. Now, suppose that v∗ ≥ v. Since

minQ∗ is published on v∗, this means that v ≤ v∗ < minQ∗. Then, minQ∗ < minQ could

have been published on v. But, this contradicts the fact that the strategy π∗ is orderly since

an orderly strategy selects the minimum blocks it may publish on top of a block. Therefore,

it is shown that v∗ < v and so PublishPath(Q∗, v∗) forks a strict superset of the blocks forked

by PublishPath(Q, v). So, at state B+ there are at most as many honest blocks as at state
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B′. As stated, this is a contradiction and so π∗ must not be optimal. Then, an optimal

strategy which is timeserving, orderly, LPM, trimmed, opportunistic, checkpoint recurrent,

positive recurrent, elevated, and patient must also be thrifty and the proof is complete.

E.4 Omitted Proofs from Section 5.4

Proof of Lemma 5.11. The proof is by contradiction. Let there be a structured strategy

π which takes action PublishPath(Q, v) where maxQ reaches finality with respect to π and

v ∈ TH(B) or v+1 ∈ TA(B) but minQ ̸= v+1. It is easy to see that this means minQ > v+1

by virtue of minQ being published on top of v.

First, we know that v + 1 cannot be unpublished, otherwise we would find that v + 1 =

min(UA(B) ∩ (v,∞)) such that v + 1 would certainly be published as part of this action

because π is orderly.

Next, since the strategy is elevated and maxQ reaches finality with respect to π, there

must not exist a block b such that v ∈ A(b) \ {b} and b < minQ. Since we know that

v + 1 < minQ, this reduces to saying that v + 1 cannot be in the longest chain at a height

greater than h(v). Since v < v + 1, it is clear that v + 1 also cannot be in the longest chain

at a height less than h(v). Therefore, v + 1 ∈ V (B) \ A(C(B)). That is, v + 1 is certainly

published but not in the longest path.

Now, consider that because v ∈ TH(B) or v + 1 ∈ TA(B), we know that v + 1 must have

been published no sooner than v. In the case that v, v + 1 ∈ TA(B), this follows because

the strategy is orderly and timeserving. That is, it is not possible that both v and v + 1

were held in the attacker’s unpublished set and the attacker published v+1 before v because

v may be published on all the same blocks as v + 1 and is less than v + 1. In the case

that v ∈ TH(B), this follows by virtue of the honest mining strategy which always publishes

immediately after mining a block. Clearly, when v is published by the honest miner, v + 1

was not yet mined and so cannot have been published sooner than v.
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Next, since π is LPM, we know that v ∈ A(C(B)). Additionally, we know that although

v+1 /∈ A(C(B)), v+1 must have once been in the longest path by the assumption that π is

assumed to be timeserving and Honest is timeserving by definition. Together this means

that at some state, v and v + 1 must have both been in the longest path, since once a block

is no longer in the longest path, it will never reenter the longest path by the fact that π and

Honest are LPM. Then, for it to be the case that v + 1 was once in the longest chain, v is

still in the longest chain, v + 1 entered the longest chain no sooner than v, and v and v + 1

were simultaneously in the longest chain at some point, it must be that v + 1 is published

on v. For v + 1 to be published on any other block would mean that it was published in

an action that necessarily forked v, which we know does not happen since v remains in the

longest chain from when it is published to state B.

So, up to this point, we know that v + 1 is published on v and v ∈ A(C(B)) but v + 1 /∈

A(C(B)). This means that there must have been some prior action which published on v

to fork v + 1 from the longest path. Clearly, since Honest never forks the longest chain,

this action must have been taken by the attacker. Actually, any action which publishes on

v after v + 1 has already been published must be taken by the attacker, by the same reason

that Honest never forks the longest chain. Then, at state B, v ̸= C(B) by the fact that

there are at least two block of a greater height which are the blocks published to fork v+ 1.

Additionally, since only the attacker forks the longest chain, we know that the unique block

in the longest chain with an edge to v must be owned by the attacker. Since π is timeserving,

the action PublishPath(Q, v) forks this successor block to v from the longest chain. But this

is a contradiction because π is trimmed yet v ̸= C(B) and the immediate successor to v

which is in the longest chain is owned by the attacker.

Therefore, since we arrive at a contradiction, the assumption must not hold and we must

have that minQ = v + 1. Thus, the claim is proven.
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E.5 Omitted Proofs from Section 5.5

Consider the following rather silly strategy which never publishes any blocks, and rather just

observes the game

Definition E.2 (Observer). For any valid state B, the strategy Observer takes action

Wait and capitulates to B0.

Claim E.3. Let π be a checkpoint recurrent and positive recurrent strategy and let (Xt)t≥0

be the game starting at X0 = B0. Then, when playing against Honest, either

• π ∈ {Honest,Observer}

• or, at state (A), π plays Wait and does not capitulate to a state

Proof. We will show that if strategy π does anything besides that shown in the second bullet,

then π ∈ {Honest,Observer}, which completes the proof. Note that a strategy π always

reaches state (A) with probability ≥ α since this state occurs if the first miner at the start

of the game is the attacker. We list the only actions π may take besides that shown in the

second bullet, then show why each action implies this membership:

• PublishPath({1}, 0) and capitulate to B0 (where capitulation is necessary since block

1 then becomes a checkpoint and π is assumed to be checkpoint recurrent). Also recall

that by checkpoint recurrence from (H), a strategy must capitulate to B0. Then, since

π transitions between states (), (H), and (A) and always publishes on the longest chain

at (A), π = Honest

• Wait and capitulate to state B0. Then, since π transitions between states (), (H), and

(A) and never publishes, π = Observer.

Notably, there are no other valid publish actions at (A) and no other choices of state to

capitulate to from (A). Thus the claim is proven.
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Observation E.4. The strategy Honest cannot be optimal for any α > αPoS.

Proof. Trivially, by the definition of αPoS, for any α > αPoS there exists a strategy π such that

Rev(π, α) > Rev(Honest, α), which shows that strategy Honest cannot be optimal.

Observation E.5. The strategy Observer cannot be optimal for any α > 0.

Proof. Trivially, Rev(Observer, α) = 0 < α = Rev(Honest, α), which shows that the

strategy Observer cannot be optimal.

Proof of Theorem 5.13. Note that for all α > αPoS, an optimal strategy which is timeserving,

orderly, LPM, trimmed, opportunistic, checkpoint recurrent, positive recurrent, elevated,

patient, and thrifty is bound to exist by Theorem 5.8. Instead of proving the theorem

directly, we will actually show that an optimal strategy which meets the criteria above must

also be non-singleton. In turn, this implies the theorem, since we can let the strategy π̃ in

the theorem simply be an optimal strategy which is timeserving, orderly, LPM, trimmed,

opportunistic, checkpoint recurrent, positive recurrent, elevated, patient, thrifty, and non-

singleton so that clearly Rev(π̃, α) ≥ Rev(π, α) for any π, by optimality.

The proof is by contradiction; suppose that for some α > αPoS there is an optimal strat-

egy π∗ which is timeserving, orderly, LPM, trimmed, opportunistic, checkpoint recurrent,

positive recurrent, elevated, patient, and thrifty but not non-singleton. Then with nonzero

probability, π∗ takes some action which is not non-singleton. That is, there exists a state B

that occurs with nonzero probability where π∗ takes an action PublishPath(Q, v) such that

• |Q| = 1

• and, after taking actionPublishPath(Q, v), maxQ reaches finality with respect to π∗

Denote the singular block in Q as q. Then, since π∗ is assumed to be timeserving, we know

that q reaches height h(C(B)) + 1, which is only possible if v = C(B).

206



Let’s calculate the value of state B to π∗ which plays this action PublishPath({q}, C(B)).

Let λ∗ = Rev(π∗, α) and let B′ denote the subsequent state after π∗ takes the action

PublishPath({q}, C(B)) at B which is not non-singleton. Since q reaches finality with respect

to π∗ and π∗ is opportunistic by assumption, then {q} = UA(B)∩(C(B),∞). In other words,

q is the only hidden block owned by the attacker that is greater than C(B). Additionally,

from B′ onward, publishing a block ≤ C(B) would require forking block q, but since we

know q has reached finality with respect to π∗, this will never happen. Therefore, since the

attacker must give up on all their unpublished blocks ≤ C(B) and owns no unpublished

blocks > C(B) at B′, π∗ capitulates from B′ to B0, or Vπ
α,λ∗(B′) = Vπ

α,λ∗(B0) = 0. So, we can

express the value of state B to strategy π∗ as

Vπ
α,λ∗(B) = rλ∗(B,B′) + Vπ

α,λ∗(B′)

≤ rλ∗(B,B′) + Vπ
α,λ∗(B′)

= rλ∗(B,B′) + Vπ
α,λ∗(B0)

= rλ∗(B,B′)

= 1− λ∗

Here, the last line follows from the fact that exactly one attacker block is published on top

of the longest chain.

Now, let’s construct an alternative strategy. Since Observation E.4 and Observation E.5

show that Honest and Observer cannot be optimal over α > αPoS, by Claim E.3 we know

that π∗ must play Wait and not capitulate at (A). In other words, π∗ certainly reaches (A)

during normal play against Honest. Then, we argue that for any state B where π∗ plays a

non-singleton action, it can instead virtually capitulate to (A) such that its only unpublished

block is q and C(B) is perceived to be the genesis block and play just as it would from (A).

We use the word “virtually” for reasons that will become clear soon. Formally, define a
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checkpoint recurrent, positive recurrent strategy π∗∗:

• π∗∗(B) = π∗(B) for all states where π∗ takes a non-singleton action.

• From state B where π∗ takes action PublishPath({q}, C(B)) which is not non-singleton,

consider a coupling between the game (X∗∗
t )t≥0 which starts at X∗∗

0 = B and the game

(X∗
t )t≥0 which starts at X∗

0 = (A) such that the attacker mines the tth block in (X∗∗
t )t≥0

if and only if the attacker mines the tth block in (X∗
t )t≥0. To be precise, the coupling

is such that block 0 in (X∗
t )t≥0 is block C(B) in (X∗∗

t )t≥0, block 1 in (X∗
t )t≥0 is block

q in (X∗∗
t )t≥0, and any other block b in (X∗

t )t≥0 is block q + (b− 1) in (X∗
t )t≥0. Then,

let π∗∗(X∗∗
t ) be the same as π∗(X∗

t ) except with the appropriate renaming over blocks

until the first time step τ such that π∗ capitulates from X∗
τ to B0. At such τ , π∗∗

capitulates from X∗∗
τ to B0.

Again, the purpose of formally defining this strategy is to show that π∗∗ may essentially

play the same as π∗ except that it capitulates from state B, where π∗ plays an action which is

not non-singleton, to state (A). It was important to show that π∗ reaches (A) during normal

play against Honest because otherwise it could have been the case that π∗ does something

silly at this state which is not checkpoint recurrent or positive recurrent and we would not be

able to use these properties in the proof to follow. Before we proceed, we must show that π∗∗

is valid, checkpoint recurrent, and positive recurrent. Since π∗ satisfies all these properties

and π∗∗ copies π∗ at all states handled by the first bullet point, we only need to show these

properties on states handled by the second bullet point. It is easy to see that because the

function which maps blocks in (X∗
t )t≥0 to blocks in (X∗∗

t )t≥0 is monotonically increasing, the

fact that π∗ is valid implies that π∗∗ is valid. Next, we show that π∗∗ is checkpoint recurrent.

Note that if a block is a checkpoint at X∗
t occurring at a height > h(C(B)), which are the

only heights which may be forked or where a checkpoint may be established by this coupling,

then its corresponding block in X∗
t is also a checkpoint. This is shown by using the fact that,
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because this coupling never forks the longest chain at a height ≤ h(C(B)), for any t, the set

of blocks owned by the attacker at at state X∗
t ∈ (X∗

t )t≥0 is a subset of the set of blocks

owned by the attacker state X∗∗
t ∈ (X∗∗

t )t≥0. By the same reason, we have that, for any t,

the set of unpublished blocks at state X∗
t ∈ (X∗

t )t≥0 is a subset of the unpublished blocks

at state X∗∗
t ∈ (X∗∗

t )t≥0. Still more, for any t, the longest path at state X∗∗
t ∈ (X∗∗

t )t≥0 is a

subpath of the longest path at state X∗
t ∈ (X∗

t )t≥0. Formalizing these statements, we have:

TA(X
∗
t ) ⊆ TA(X

∗∗
t )

UA(X∗
t ) ⊆ UA(X∗∗

t )

A(C(X∗
t )) ⊇ A(C(X∗∗

t ))

Then, let Pi be a checkpoint at some state X∗∗
t ∈ (X∗∗

t )t≥0 with height > h(C(B)), and let

Pi−1 be the most recent checkpoint. We want to show that Pi is also a checkpoint at state

X∗
t ∈ (X∗

t )t≥0. Let f : N → N be the function which maps a block in (X∗
t )t≥0 to a block in

(X∗∗
t )t≥0, with its inverse f−1 defined for C(B)∪{q, q+1, ...}, and bound to exist because f is

monotonically increasing. As a slight kludge, let f−1(b) = 0 for any b /∈ C(B)∪{q, q+1, ...}.

|A(C(X∗
t )) ∩ (f−1(Pi−1), f

−1(Pi)] ∩ TA(X
∗
t )| ≥ |A(C(X∗∗

t )) ∩ (Pi−1, Pi] ∩ TA(X
∗∗
t )|

≥ |UA(X∗∗
t ) ∩ (Pi−1, Pi]|

≥ |UA(X∗
t ) ∩ (f−1(Pi−1), f

−1(Pi)]|

Here, the first inequality is by the properties over the coupling listed above. The second

inequality is by the definition of a checkpoint at some state X∗∗
t ∈ (X∗∗

t )t≥0. The third

inequality is again by the properties over the coupling listed above. Therefore, it is shown

that if a block is a checkpoint at X∗
t occurring at a height > h(C(B)) then its corresponding

block in X∗
t is also a checkpoint. Then, the fact that π∗ is checkpoint recurrent implies
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that π∗∗ is checkpoint recurrent. Finally it is clear that π∗∗ is positive recurrent because the

expected time until the game (X∗∗
t )t≥0 capitulates to B0 from X∗∗

0 = B is just the expected

time until the game (X∗
t )t≥0 capitulates to B0 from X∗

0 = (A), which must be finite since

π∗ is positive recurrent. So, it is shown that π∗∗ is a valid, checkpoint recurrent, positive

recurrent strategy.

To motivate this rather awkward construction, consider the problems we would run into

if we explicitly constructed a strategy that capitulates to (A) and copies π∗ thereon, which

might look like the following:

• π̃(B) = π∗(B) for all states where π∗ takes a non-singleton action.

• At state B where π∗ takes action PublishPath({q}, C(B)) which is not non-singleton,

π̃ capitulates to (A).

Under this construction, since the only action we would have changed is changing a publish

action to a capitulation and we have assumed π∗ to be timeserving, orderly, LPM, trimmed,

opportunistic, checkpoint recurrent, elevated, and patient, then so too would be π̃. Addi-

tionally, since we have removed all actions which were not non-singleton by construction, π̃

would be non-singleton. We could even show that for α(1−α)2

(1−2α)2
≤ 2, π̃ is positive recurrent,

even though it is possible that in capitulating to (A) we have created a loop within the

implicit Markov chain. To show this, we would recall that by Corollary B.33, we know the

optimal strategy from (2A) given that α(1−α)2

(1−2α)2
≤ 2, which is that the strategy must play

Wait from (2A) until time step τ = min{t ≥ 3 | |TA(Xτ )| − 1 = |TH(Xτ )|} for X2 = (2A)

where the strategy plays PublishPath(|TA(Xτ )|, 0). Since we have assumed π∗ to be an op-

timal strategy, it must play this strategy at (2A). But we know that a miner playing this

strategy from (2A) capitulates to B0 in finite expected time. So, since (A) transitions to

(2A) with probability α, from which it will not capitulate back to (A), the probability that

π̃ capitulates back to (A) after starting from (A) would be strictly less than one. Therefore,
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for strategy π̃, the expected number of capitulations to (A) after reaching (A) would be

finite. Then, we would use the fact that π∗ is assumed to be positive recurrent such that

any state from which the strategy will not capitulate back to (A) must capitulate to B0 in

finite expected time. Altogether, this shows that from any state, this construction of π̃ is

such that π̃ would capitulate to B0 in finite expected time and so π̃ is positive recurrent.

For α(1−α)2

(1−2α)2
> 2 it would be harder to show that π̃ is positive recurrent because we cannot be

sure that an optimal strategy capitulates from (2A) to B0 without first capitulating to (A).

This aside, π̃ would have all of the properties that we may desire. However, the issue with

π̃ is that we cannot find a way to express the value of any state B handled by the second

bullet to derive a contradiction.

To further understand the goal of the constructed strategy π∗∗ which may be obscured

by its awkward construction, consider yet another alternate construction:

• π̂(B) = π∗(B) for all states where π∗ takes a non-singleton action.

• At state B where π∗ takes action PublishPath({q}, C(B)) which is not non-singleton,

π̂ capitulates to (A) and copies π∗ until (and including) the next time π∗ capitulates

to B0 (at which π̂ also capitulates to B0).

This actually fails the definition of a checkpoint recurrent and positive recurrent strategy

since at the same state it may take two different actions between two different runs of the

game. That is, suppose that π∗ plays PublishPath({6}, 5) at B = (A,H,H,A,H,A). Then,

the first time the game reaches B, π̂ will capitulate to (A). Suppose from here, the game

again reaches B, then this time π̂ will play PublishPath({6}, 5). Clearly, this must fail the

definition of a checkpoint recurrent and positive recurrent strategy since a strategy must be

a function that always outputs the same action given the same state.

These alternate constructions reveal what we intend for π∗∗ to behave like; any awkward-

ness in the construction of π∗∗ is just so that it may type check as a strategy and so that
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the value of the state can be expressed. In some sense, π∗∗ basically “tapes” together two

runs of the game so that in the first run it is definitely non-singleton and in the second run

it may simply follow π∗, where it may ultimately end up taking a non-singleton action.

Now, we are able to finally derive the contradiction. Now, consider the reward to π∗∗

from a state B handled by the second bullet point in its definition. Due to the coupling, we

must have that Vπ∗∗

α,λ∗(B) = Vπ∗

α,λ∗ ((A)). Furthermore, since λ∗ = Rev(π∗, α), we have:

Vπ∗

α,λ∗(B0) = 0 = αVπ∗

α,λ∗ ((A))− (1− α)(Vπ∗

α,λ∗ ((H))− λ∗) = αVπ∗

α,λ∗ ((A))− (1− α)λ∗

=⇒ Vπ∗

α,λ∗ ((A)) = λ∗(1−α
α

)

However, for λ∗ > α, which must be the case for our assumption that α > αPoS and π∗ is an

optimal strategy for α, we have λ∗ = Rev(π∗, α) > α such that

λ∗(1−α
α

)− (1− λ∗) = λ∗−αλ∗−α+αλ∗

α
= λ∗−α

α
> 0 =⇒ λ∗(1−α

α
) > 1− λ∗

Recall that, as previously derived, Vπ∗

α,λ∗(B) = 1− λ∗. So, we can chain together the derived

equalities and inequalities to get

Vπ∗∗

α,λ∗(B) = Vπ∗

α,λ∗ ((A)) = λ∗(1−α
α

) > 1− λ∗ = Vπ∗

α,λ∗(B)

So, we find that Vπ∗∗

α,λ∗(B) > Vπ∗

α,λ∗(B). However, since we have assumed that π∗ is an optimal

positive recurrent strategy and λ∗ = Rev(π∗, α), this contradicts Lemma B.9 (Bellman’s

Principle of Optimality) and so we conclude that π∗ cannot be optimal. In turn, this means

that such an optimal strategy which is timeserving, orderly, LPM, trimmed, opportunistic,

checkpoint recurrent, positive recurrent, elevated, patient, and thrifty must also be non-

singleton and the proof is complete.

Note that for αPoS < 1/3 < α, the proof could be simplified by instead letting π∗∗ copy
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π∗ everywhere π∗ takes a non-singleton action and virtually capitulating to (A) and playing

Sm everywhere π∗ takes an action which is not non-singleton. The reason we may do this

for αPoS < 1/3 < α is because we explicitly know strategies where Vα ((A)) > 1−λ over this

range of α, whereas for αPoS < α ≤ 1/3 such strategies are bound to exist but might not

necessarily be known. Note that the choice of 1/3 and Sm are arbitrary and may be replaced

by any known upper bound to αPoS and a positive recurrent strategy which outperforms the

honest miner at this upper bound respectively.
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F Omitted Proofs from Section 6

Proof of Corollary 6.3. Let B be a state. The proof is by induction on N , the length of

the sequence minus one. The base case is N = 1. Let a1 ∈ [h(C(B))] and let B′
1 be the

a1-capitulation of B. Then, by Lemma B.27, we have

Vα(B) ≤ Vα(B′
1) + rλ(B0, B

′
1)− rλ(B0, B) +

a1∑
i=1

(Pr[Hi(Xτ ) ∈ TA(Xτ ) | X0 = B]− λ)

= Vα(B′
1) + rλ(B0, B

′
1)− rλ(B0, B)− a1λ+

a1∑
i=1

Pr[Hi(Xτ ) ∈ TA(Xτ ) | X0 = B]

= Vα(B′
1) + rλ(B0, B

′
1)− rλ(B0, B)− a1λ+

a1−a0∑
i=1

Pr[Hi(Xτ ) ∈ TA(Xτ ) | X0 = B′
0]

= Vα(B′
1) + rλ(B0, B

′
1)− rλ(B0, B)− a1λ+

1∑
i=1

a1−a0∑
j=1

Pr[Hj(Xτ ) ∈ TA(Xτ ) | X0 = B′
0]

= Vα(B′
1) + rλ(B0, B

′
1)− rλ(B0, B)− a1λ+

1∑
i=1

ai−ai−1∑
j=1

Pr[Hj(Xτ ) ∈ TA(Xτ ) | X0 = B′
i−1]

= Vα(B′
N) + rλ(B0, B

′
N)− rλ(B0, B)− aNλ+

N∑
i=1

ai−ai−1∑
j=1

Pr[Hj(Xτ ) ∈ TA(Xτ ) | X0 = B′
i−1]

Thus, the base case is proven. Now, for the inductive step, assume that the statement holds

for N = k ∈ [h(C(B)) − 1]. Now, we will show that the statement holds for N = k + 1 ∈

[h(C(B))]. Let (ai)
k+1
i=0 be a sequence such that a0 = 0 and for all i < j ∈ [k + 1] we have

ai, aj ∈ [h(C(B))] and ai < aj. Also, let (B′
i)
k+1
i=0 be a sequence of states such that B′

0 = B

and for all i ∈ [k+1] we have B′
i is the ai-capitulation of B. First, note that the subsequence

(ai)
k
i=0 is such that a0 = 0 and for all i < j ∈ [k] we have ai, aj ∈ [h(C(B))] and ai < aj.

Furthermore, the subsequence (B′
i)
k
i=0 is such that B′

0 = B and for all i ∈ [k] we have B′
i is

the ai-capitulation of B. Then, by the inductive hypothesis, we have

Vα(B) ≤ Vα(B′
k) + rλ(B0, B

′
k)− rλ(B0, B)− akλ+

k∑
i=1

ai−ai−1∑
j=1

Pr[Hj(Xτ ) ∈ TA(Xτ ) | X0 = B′
i−1]
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Now, consider B′
k, the ak-capitulation of B. By the definition of state capitulation, a block

that exists at state B exists at capitulated state B′
k if and only if it can reach height ≥ ak+1.

Then, for any block b in B′
k, block b can reach height h in B if and only if block b can reach

height h− ak in B′
k. Next, consider the ak+1− ak ∈ [h(C(B))− ak] = [h(C(B′

k))] capitulation

of B′
k. A block that exists at state B′

k exists at the (ak+1−ak)-capitulation of B′
k if and only

if it can reach height ≥ ak+1− ak + 1 in B′
k. But, using our previous statement, a block b in

B′
k can only reach height h′ ≥ ak+1 − ak + 1 if, for some height h that block b can reach in

B, we have h′ = h− ak. This implies that h = h′ + ak ≥ ak+1 + 1, or that block b exists at

the (ak+1 − ak)-capitulation of B′
k if and only if block b can reach height ≥ ak+1 + 1 at B.

In other words, the (ak+1− ak)-capitulation of B′
k is exactly the ak+1-capitulation of B since

induced subgraph is over the same set of blocks in both cases.

So, when we recall that B′
k+1 is the ak+1-capitulation of B, we may apply Lemma B.27 to

upper bound state B′
k using c = ak+1−ak ≤ h(C(B′

k)) and B′
k+1, the (ak+1−ak)-capitulation

of B′
k:

Vα(B′
k) ≤ Vα(B′

k+1) + rλ(B0, B
′
k+1)− rλ(B0, B

′
k) +

ak+1−ak∑
i=1

(Pr[Hi(Xτ ) ∈ TA(Xτ ) | X0 = B′
k]− λ)

Substituting this in for Vα(B′
k) as it appears in the inductive hypothesis, we have

Vα(B) ≤ Vα(B′
k+1) + rλ(B0, B

′
k+1)− rλ(B0, B

′
k) +

ak+1−ak∑
i=1

(Pr[Hi(Xτ ) ∈ TA(Xτ ) | X0 = B′
k]− λ)

+ rλ(B0, B
′
k)− rλ(B0, B)− akλ+

k∑
i=1

ai−ai−1∑
j=1

Pr[Hj(Xτ ) ∈ TA(Xτ ) | X0 = B′
i−1]

= Vα(B′
k+1) + rλ(B0, B

′
k+1) +

ak+1−ak∑
i=1

(Pr[Hi(Xτ ) ∈ TA(Xτ ) | X0 = B′
k]− λ)
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− rλ(B0, B)− akλ+
k∑

i=1

ai−ai−1∑
j=1

Pr[Hj(Xτ ) ∈ TA(Xτ ) | X0 = B′
i−1]

= Vα(B′
k+1) + rλ(B0, B

′
k+1)− (ak+1 − ak)λ+

ak+1−ak∑
i=1

Pr[Hi(Xτ ) ∈ TA(Xτ ) | X0 = B′
k]

− rλ(B0, B)− akλ+
k∑

i=1

ai−ai−1∑
j=1

Pr[Hj(Xτ ) ∈ TA(Xτ ) | X0 = B′
i−1]

= Vα(B′
k+1) + rλ(B0, B

′
k+1)− ak+1λ+

ak+1−ak∑
i=1

Pr[Hi(Xτ ) ∈ TA(Xτ ) | X0 = B′
k]

− rλ(B0, B) +
k∑

i=1

ai−ai−1∑
j=1

Pr[Hj(Xτ ) ∈ TA(Xτ ) | X0 = B′
i−1]

= Vα(B′
k+1) + rλ(B0, B

′
k+1)− rλ(B0, B)− ak+1λ+

k+1∑
i=1

ai−ai−1∑
j=1

Pr[Hj(Xτ ) ∈ TA(Xτ ) | X0 = B′
i−1]

Therefore, the statement holds for N = k + 1 and the inductive step proven. So, by the

principle of induction, the statement holds for all N ∈ [h(C(B))] which completes the proof.
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G Omitted Proofs from Section 7

G.1 Omitted Proofs from Section 7.1

Proof of Theorem 7.2. Let B = (c1γ
′
1, ..., ct′γ

′
t′) be a valid state in abbreviated notation with

tB =
∑t′

i=1 ci and h(C(B))-capitulation B0. Additionally, let x ∈ N+ and let B′, B′′ ∈ Bx∆

be states such that tB + 1 ∈ TA(B
′) and tB + 1 ∈ TA(B

′′). Finally, for each of state B′

and B′′, let there be an optimal, checkpoint recurrent, positive recurrent strategy that, with

certainty, from this state, eventually publishes all attacker blocks > tB in the same publish

action then capitulates to B0.

Let these optimal strategies be denoted π∗
B′ and π∗

B′′ and let their revenues be λ∗ =

Rev(π∗
B′ , α) = Rev(π∗

B′′ , α). Note that by Theorem 5.10, we may assume that π∗
B′ , π∗

B′′

are structured. For convenience, denote d = |TA(B
′) \ TA(B)| − |TA(B

′′) \ TA(B)|. As an

overview, the proof will couple states B′, B′′ to separately show Vα(B′) ≥ Vα(B′′) + d and

Vα(B′) ≤ Vα(B′′) + d which implies the theorem.

We first show that Vα(B′) ≥ Vα(B′′) + d by showing that, for strategy π∗
B′′ from B′′

that achieves value Vπ∗
B′′

α,λ∗(B′′), there is a related strategy π̃ that achieves value V π̃
α,λ∗(B′) =

Vπ∗
B′′

α,λ∗(B′′) + d. Then, by Lemma B.9 (Bellman’s Principle of Optimality), we know that

Vα(B′) ≥ V π̃
α,λ∗(B′) = Vπ∗

B′′
α,λ∗(B

′′) + d = Vα(B′′) + d

Now, define a game (X ′′
t )t≥0 which starts at X ′′

0 = B′′. Let τ be the time such that at state

X
′′Half
τ , π∗

B′′ takes action PublishPath(Q′′
τ , v

′′
τ ) where TA(X

′′Half
τ ) \ TA(B) ⊆ Q′′

τ . That is, at

τ , π∗
B′′ publishes at least all attacker blocks > tB. Note that τ is bound to exist by the

assumptions on π∗
B′′ . Also note that X ′′

τ = B0 by the assumptions on π∗
B′′ . Note that, since

no blocks in B can reach height ≥ h(C(B)) + 1 and h(C(B′′)) ≥ h(C(B′)), it is clear that

because π∗
B′′ is timeserving, any block in TA(B) may only be published in the same action
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which publishes attacker blocks > tB. Therefore, for all t < τ , strategy π∗
B′′ takes action

Wait at X
′′Half
t .

Now, define a game (X ′
t)t≥0 which starts atX ′

0 = B′ and is coupled with the game (X ′′
t )t≥0

such that for t ≥ 1, the attacker mines block t + tB′ in the game (X ′
t)t≥0 if and only if the

attacker mines block t+ tB′′ in the game (X ′′
t )t≥0. Then, let π̃ be the strategy that for t < τ ,

plays Wait at state X
′Half
t and for t = τ plays PublishPath(Q′

τ , v
′
τ ) at state X

′Half
τ such that

• v′τ = v′′τ

• The published set Q′
τ is the set of all attacker blocks > tB union the set of blocks in

Q′′
τ that are ≤ tB. In other words

Q′
τ =

(
Q′′

τ \
(
TA(X

′′Half
τ ) \ TA(B)

))
∪
(
TA(X

′Half
τ ) \ TA(B)

)

Additionally, let π̃ capitulate from X ′
τ to B0.

Trivially, it is always valid to play Wait. So, the only action we must check so that π̃ is

a valid, checkpoint recurrent, positive recurrent strategy is the action PublishPath(Q′
τ , v

′
τ ).

First, let’s show that the action is valid. Let’s show that v′τ = v′′τ is bound to exist in the

block tree at state X
′Half
τ . By the assumption that tB + 1 ∈ TA(B

′′) and π∗
B′′ publishes all

attacker blocks > tB at time τ , we know that tB +1 ∈ Q′′
τ . Then, by the definition of a valid

action, we know that v′′τ < minQ′′
τ ≤ tB+1, which implies that v′′τ ≤ tB. So, v

′′
τ exists at state

B and therefore exists at state B′ and X
′Half
τ by extension. To see that v′′τ was published

prior to state X
′Half
τ , and thus exists in the block tree, consider that by the definition of

B′′ and the assumption that the strategy plays Wait until time step τ , no attacker blocks

exist in the longest chain at X
′′Half
τ . So, v′′τ which is in the longest chain by the assumption

that π∗
B′′ is LPM must have been created by an honest miner. Then, if v′′τ was created by an

honest miner at some time step ≤ tB, it is certainly published in the block tree at state B

and by extension B′. So, it is valid for π̃ to set v′τ = v′′τ .
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Next, let’s show that Q′
τ ⊆ TA(X

′Half
τ ). That is, let’s show that all blocks that π̃

tries to publish at state X
′Half
τ are indeed owned by the attacker at state X

′Half
τ . Clearly,

TA(X
′Half
τ )\TA(B) ⊆ TA(X

′Half
τ ). Now, we just need to show thatQ′′

τ\
(
TA(X

′′Half
τ ) \ TA(B)

)
⊆

TA(X
′Half
τ ). But, this can be rewritten asQ′′

τ∩TA(B) ⊆ TA(B) ⊆ TA(X
′Half
τ ). In other words,

Q′′
τ \
(
TA(X

′′Half
τ ) \ TA(B)

)
⊆ TA(X

′Half
τ ) is also easily shown to be in TA(X

′Half
τ ) because

this only contains blocks that are also in B, which states B′ and by extension state X
′Half
τ

follow.

Since the attacker has not published any blocks at state B′ by definition and π̃ does not

publish prior to X
′Half
τ , we have UA(X

′Half
τ ) = TA(X

′Half
τ ) such that Q′

τ clearly only consists

of unpublished blocks, as desired.

As the final step to showing the action is valid, let’s show that v′τ < minQ′
τ . We claim

that minQ′
τ = minQ′′

τ , which implies the claim since v′τ = v′′τ < minQ′′
τ = minQ′

τ . The

proof is by case analysis on the size of Q′′
τ \
(
TA(X

′′Half
τ ) \ TA(B)

)
, the set of blocks in Q′′

τ

that are ≤ tB.

• Q′′
τ \
(
TA(X

′′Half
τ ) \ TA(B)

)
= ∅: Then, Q′′

τ ⊆ TA(X
′′Half
τ ) \ TA(B). But, we also

have TA(X
′′Half
τ ) \ TA(B) ⊆ Q′′

τ by the definition of τ . Then, we have that Q′′
τ =

TA(X
′′Half
τ ) \ TA(B). Since the first block mined after B is block tB + 1 and tB +

1 ∈ TA(B
′′) ⊆ TA(X

′′Half
τ ) by assumption, we must have that minQ′′

τ = tB + 1.

But if Q′′
τ \

(
TA(X

′′Half
τ ) \ TA(B)

)
= ∅, by our construction of Q′

τ we have Q′
τ =

TA(X
′Half
τ ) \ TA(B). Again, since the first block mined after B is block tB + 1 and

tB + 1 ∈ TA(B
′) ⊆ TA(X

′Half
τ ) by assumption, we must have that minQ′

τ = tB + 1.

Then, minQ′
τ = minQ′′

τ and so this case is complete.

• Q′′
τ \
(
TA(X

′′Half
τ ) \ TA(B)

)
̸= ∅: Then, there is some block b ∈ Q′′

τ such that b ≤ tB.

Clearly, since TA(X
′′Half
τ )\TA(B) is the set of attacker blocks > tB, the minimum of Q′′

τ

is not in TA(X
′′Half
τ )\TA(B). So, the minimum block inQ′′

τ is simply the minimum block
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in Q′′
τ \
(
TA(X

′′Half
τ ) \ TA(B)

)
. But, Q′′

τ \ (TA(X
′′Half
τ ) \ TA(B)) ⊆ Q′

τ . Furthermore,

since the only other blocks in Q′
τ are TA(X

′Half
τ ) \ TA(B) which all have timestamp

> tB, we know that minQ′′
τ \ (TA(X

′′Half
τ )\TA(B)) < min(TA(X

′Half
τ )\TA(B)), or that

minQ′
τ = minQ′′

τ \ (TA(X
′′Half
τ ) \ TA(B)) = minQ′′

τ , and so this case is complete.

So, since we have proven both cases, it is shown that minQ′
τ = minQ′′

τ which finally com-

pletes the proof that the action taken at X
′Half
τ is valid.

Now, we want to show that π̃’s action at X
′Half
τ is checkpoint recurrent. Namely, the

strategy must not fork a checkpoint and if the strategy establishes a checkpoint with this

action, it must not own any blocks greater than the checkpoint.

Towards the former, although we will prove this later, assume for now that the action

PublishPath(Q′
τ , v

′
τ ) is timeserving, such that forking a checkpoint is an actual concern. By

the definition of B, B′, and B′′ the attacker has no published any blocks at any of these states.

Furthermore, by the assumption on π∗
B′′ , the attacker still has not published any blocks in

the game (X ′′
t )t≥0 until X

′′Half
τ . Similarly, by the construction of π̃, the attacker still has not

published any blocks in the game (X ′
t)t≥0 until X

′Half
τ . So, the only checkpoints which may

exist at X
′Half
τ or X

′′Half
τ are honest blocks in the longest chain with timestamp less than

the minimum (unpublished) attacker block. In other words, the checkpoints at X
′Half
τ are all

honest miner blocks b such that b < minUA(X
′Half
τ ). Similarly, the checkpoints at X

′Half
τ are

all honest miner blocks b such that b < minUA(X
′Half
τ ). Then, we claim that the checkpoints

at X
′Half
τ and X

′′Half
τ are the same, which reduces to showing that the minimum unpublished

blocks in X
′Half
τ and X

′′Half
τ are equal. Clearly, if some unpublished attacker block exists

at state B, then this is shown since both X
′Half
τ and X

′′Half
τ follow state B and can never

mine a block with a smaller timestamp than any block mined by state B. If no unpublished

attacker block exists at state B, we at least know that tB +1 ∈ TA(B
′) and tB +1 ∈ TA(B

′′)

by assumption, and so the minimum unpublished attacker block for both X
′Half
τ and X

′′Half
τ

will be exactly tB + 1. So, it is shown that the checkpoints at X
′Half
τ and X

′′Half
τ are the
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same. Next, the result that the minimum unpublished block is at most tB+1 in turn implies

that there cannot exist a checkpoint at height greater than h(C(B)) at X
′Half
τ or X

′′Half
τ ,

since any honest miner block published after B will have timestamp greater than tB + 1.

So, all that remains to be shown is that at X
′Half
τ , for all i ∈ {h(v′τ ) + 1, ..., h(C(B))}, the

block Hi(X
′Half
τ ) is not a checkpoint. But, once again, since the attacker has not published

any blocks before X
′Half
τ , for all i ∈ {h(v′τ ) + 1, ..., h(C(B))} we have Hi(X

′Half
τ ) = Hi(B).

By the same reasoning, since the attacker does not publish any blocks before X
′′Half
τ , for all

i ∈ {h(v′′τ ) + 1, ..., h(C(B))} we have Hi(X
′′Half
τ ) = Hi(B). Together, this means that for all

i ∈ {h(v′τ ) + 1, ..., h(C(B))}, where recall v′τ = v′′τ , we have Hi(X
′Half
τ ) = Hi(X

′′Half
τ ). Now

π∗
B′′ is assumed to be timeserving, so for all i ∈ {h(v′′τ ) + 1, ..., h(C(B))}, Hi(X

′′Half
τ ) will

be forked. But, π∗
B′′ is also assumed to be checkpoint recurrent, such that these cannot be

checkpoints. Then, by the result that the set of checkpoints at X
′Half
τ and X

′′Half
τ are exactly

the same, the result that Hi(X
′Half
τ ) = Hi(X

′′Half
τ ) for all i ∈ {h(v′τ ) + 1, ..., h(C(B))}, and

the result that for all i ∈ {h(v′τ ) + 1, ..., h(C(B)))} the block Hi(X
′′Half
τ ) is not a checkpoint,

we finally arrive at the fact that for all i ∈ {h(v′τ ) + 1, ..., h(C(B))} the block Hi(X
′Half
τ ) is

not a checkpoint. So, π̃’s action at X
′Half
τ does not fork a checkpoint.

Now, we show that if the strategy establishes a checkpoint with this action, it does

not own any unpublished blocks greater than the checkpoint. First, consider that if the

publish action establishes a checkpoint, then this checkpoint is > v′τ because this is the

only range over which attacker blocks are changing from unpublished to published. Now,

we will show the slightly stronger claim that UA(X ′
τ ) ∩ (v′τ ,∞) = ∅, or that the attacker

owns no unpublished blocks > v′τ after the publish action at X ′
τ . Equivalently, we will show

that UA(X
′Half
τ ) ∩ (v′τ ,∞) ⊆ Q′

τ . Clearly, by definition, TA(X
′Half
τ ) \ TA(B) = UA(X

′Half
τ ) \

UA(B) = UA(X
′Half
τ ) ∩ (tB,∞) ⊆ Q′

τ where the first equality is because the attacker has

not published any blocks prior to X
′Half
τ . So, now we only have to show that UA(X

′Half
τ ) ∩

(v′τ , tB] ⊆ Q′
τ . But, since X

′Half
τ and X

′′Half
τ both follow state B and have not previously
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published any attacker blocks, we must have UA(X
′Half
τ ) ∩ (v′τ , tB] = UA(X

′′Half
τ ) ∩ (v′′τ , tB].

Furthermore, π∗
B′′ is opportunistic and maxQ′′

τ reaches finality with respect to π∗
B′′ since π∗

B′′

subsequently capitulates to B0 such that UA(X
′′Half
τ )∩ (v′′τ , tB] ⊆ Q′′

τ . Finally, since we have

Q′′
τ \ (TA(X

′′Half
τ ) \ TA(B)) = Q′′

τ ∩ TA(B) = Q′′
τ ∩ UA(B) = Q′′

τ ∩ UA(X
′′Half
τ ) ∩ (0, tB]

we find that

UA(X
′′Half
τ ) ∩ (v′′τ , tB] ⊆ Q′′

τ ∩ UA(X
′′Half
τ ) ∩ (0, tB] = Q′′

τ \ (TA(X
′′Half
τ ) \ TA(B)) ⊆ Q′

τ

where the last containment is by definition ofQ′
τ , which completes the claim that UA(X

′Half
τ )∩

(v′τ ,∞) ⊆ Q′
τ . Since π̃ owns no unpublished blocks > v′τ at X

′
τ and a checkpoint may only be

established over this range, we find that even if π̃ establishes a checkpoint with this action,

it does not own any unpublished blocks greater than the checkpoint. Therefore, it is shown

that the action is checkpoint recurrent.

Finally, π̃ is easily positive recurrent from B′ since we have assumed π∗
B′′ to be positive

recurrent such that τ is finite in expectation, and recall that the strategy capitulates from

X
′Half
τ to B0.

In summary, so far we have shown that π̃ is a valid, checkpoint recurrent, positive re-

current strategy from B′. Now, we want to show the result that V π̃
α,λ∗(B′) = Vπ∗

B′′
α,λ∗(B′′) + d.

Let’s first calculate Vπ∗
B′′

α,λ∗(B′′). We know that the first time π∗
B′′ capitulates to B0 is τ , such

that

Vπ∗
B′′

α,λ∗(B
′′) = rλ∗(B′′, X

′′Half
τ ) + rλ∗(X

′′Half
τ , X ′′

τ ) + V
π∗
B′′

α,λ∗(X
′′
τ )

= rλ∗(B′′, X
′′Half
τ ) + rλ∗(X

′′Half
τ , X ′′

τ )

Then, since the honest miner simply publishes one block to the longest chain everywhere
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they mine between B′′ and X
′′Half
τ while π∗

B′′ plays Wait, this simplifies to

Vπ∗
B′′

α,λ∗(B
′′) = −|TH(X

′′Half
τ ) \ TH(B

′′)|λ∗ + rλ∗(X
′′Half
τ , X ′′

τ )

Finally, since π∗
B′′ is assumed to be patient, we know that the action PublishPath(Q′′

τ , v
′′
τ )

grows the height of the longest chain by exactly one. Furthermore, since the π∗
B′′ has not

published any blocks prior to this state, we know that each block kicked out of the longest

chain belongs to the honest miner. So, we have

rλ∗(X
′′Half
τ , X ′′

τ ) = |Q′′
τ | − λ∗

= | (Q′′
τ \ (TA(X

′′
Half) \ TA(B))) ∪

(
TA(X

′′Half
τ ) \ TA(B)

)
| − λ∗

= |Q′′
τ \ (TA(X

′′
Half) \ TA(B)) |+ |TA(X

′′Half
τ ) \ TA(B)| − λ∗

= |Q′′
τ \ (TA(X

′′
Half) \ TA(B)) |+ |

(
TA(X

′′Half
τ ) \ TA(B

′′)
)
∪ (TA(B

′′) \ TA(B)) | − λ∗

= |Q′′
τ \ (TA(X

′′
Half) \ TA(B)) |+ |TA(X

′′Half
τ ) \ TA(B

′′)|+ |TA(B
′′) \ TA(B)| − λ∗

Now, let’s calculate V π̃
α,λ∗(B′). By construction π̃ capitulates to B0 at X ′

τ , so

V π̃
α,λ∗(B′) = rλ∗(B′, X

′Half
τ ) + rλ∗(X

′Half
τ , X ′

τ ) + V π̃
α,λ∗(X ′

τ )

= rλ∗(B′, X
′Half
τ ) + rλ∗(X

′Half
τ , X ′

τ )

Then, since the honest miner simply publishes one block to the longest chain everywhere

they mine between B′ and X
′Half
τ while π̃ plays Wait, this simplifies to

V π̃
α,λ∗(B′) = −|TH(X

′Half
τ ) \ TH(B

′)|λ∗ + rλ∗(X
′Half
τ , X ′

τ )

Now, we will show that π̃’s action PublishPath(Q′
τ , v

′
τ ) is patient, which will allow us to
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calculate rλ∗(X
′Half
τ , X ′

τ ) easily. The action is such that maxQ′
τ reaches finality, so we just

have to show that h(C(X ′
τ )) − h(C(X ′Half

τ )) = 1. In other words, we want to show that

h(v′τ ) + |Q′
τ | = h(C(X ′Half

τ )) + 1. Let’s derive this:

h(v′τ ) + |Q′
τ | = h(v′′τ ) + |Q′

τ |

= h(v′′τ ) + | (Q′′
τ \ (TA(X

′′
Half) \ TA(B))) ∪

(
TA(X

′Half
τ ) \ TA(B)

)
|

= h(v′′τ ) + |Q′′
τ \ (TA(X

′′
Half) \ TA(B)) |+ |TA(X

′Half
τ ) \ TA(B)|

= h(v′′τ ) + |Q′′
τ \ (TA(X

′′
Half) \ TA(B)) |+ |

(
TA(X

′Half
τ ) \ TA(B

′)
)
∪ (TA(B

′) \ TA(B)) |

= h(v′′τ ) + |Q′′
τ \ (TA(X

′′
Half) \ TA(B)) |+ |TA(X

′Half
τ ) \ TA(B

′)|+ |TA(B
′) \ TA(B)|

= h(v′′τ ) + |Q′′
τ \ (TA(X

′′
Half) \ TA(B)) |+ |TA(X

′′Half
τ ) \ TA(B

′′)|+ |TA(B
′) \ TA(B)|

= h(v′′τ ) + |Q′′
τ \ (TA(X

′′
Half) \ TA(B)) |+ |TA(X

′′Half
τ ) \ TA(B

′′)|+ |TA(B
′′) \ TA(B)|+ d

= h(C(X ′′Half
τ )) + 1 + d

= h(C(X ′Half
τ )) + 1

The first line is because v′τ = v′′τ and this block is already argued to be present at state B

such that its height must be the same in both games. The second through fifth lines are just

due to the definition of Q′
τ and simplification. The sixth line uses the fact that the coupling

between the games ensures that |TA(X
′Half
τ \ TA(B

′)| = |TA(X
′′Half
τ \ TA(B

′′)|. The seventh

line uses the fact that |TA(B
′) \ TA(B)| = |TA(B

′′) \ TA(B)| + d. The eighth line uses the

fact that |Q′′
τ \ (TA(X

′′
Half) \ TA(B)) |+ |TA(X

′′Half
τ ) \ TA(B

′′)|+ |TA(B
′′) \ TA(B)| is already

shown to be the number of blocks published by π∗
B′′ at X ′′

τ and so h(v′′τ ) plus this quantity is

the height that the maximum block in Q′′
τ reaches, which must be h(C(X ′′Half

τ )) + 1 by the

assumption that π∗
B′′ is patient. To understand the final line, consider that for any t ≥ 1

the number of honest blocks at any state X
′Half
t is equal to the number of honest blocks at

state X
′′Half
t plus d. Clearly, any honest miner blocks mined at or before state B exist at
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both states B′ and B′′. So, this claims that there are d more honest blocks between states

B and B′ than there are between states B and B′′. But, certainly this must be true because

this is the only way that there can be d more attacker blocks between states B and B′ than

there are between states B and B′′ while keeping the difference between attacker blocks and

honest miner blocks constant. Next, note that since no attacker blocks are published prior

to X
′Half
τ or X

′′Half
τ , the height in either game at any state up to and including X

′Half
τ and

X
′′Half
τ is just the number of honest miner blocks in the game. So, we have that

|TH(X
′′Half
τ )|+ d = |TH(X

′′Half
τ )| =⇒ h(C(X ′′Half

τ )) + d = h(C(X ′Half
τ ))

Now, that we have shown the action to be patient, we can easily express rλ∗(X
′Half
τ , X ′

τ )

as the following (where many quantities were already computed in the above derivation so

we will skip steps here):

rλ∗(X
′Half
τ , X ′

τ ) = |Q′
τ | − λ∗

= |Q′′
τ \ (TA(X

′′
Half) \ TA(B)) |+ |TA(X

′′Half
τ ) \ TA(B

′′)|+ |TA(B
′′) \ TA(B)|+ d− λ∗

Finally, we can show that V π̃
α,λ∗(B′) = Vπ∗

B′′
α,λ∗(B′′) + d:

V π̃
α,λ∗(B′)− Vπ∗

B′′
α,λ∗(B

′′) = −|TH(X
′Half
τ ) \ TH(B

′)|λ∗ + rλ∗(X
′Half
τ , X ′

τ )

−
(
−|TH(X

′′Half
τ ) \ TH(B

′′)|λ∗ + rλ∗(X
′′Half
τ , X ′′

τ )
)

= −|TH(X
′Half
τ ) \ TH(B

′)|λ∗ + |TH(X
′′Half
τ ) \ TH(B

′′)|λ∗ + d

= d

The second line simplifies using the rλ∗(X
′Half
τ , X ′

τ ) and rλ∗(X
′′Half
τ , X ′′

τ ) derived above.

The last line recognizes that |TH(X
′Half
τ ) \ TH(B

′)| = |TH(X
′′Half
τ ) \ TH(B

′′)| by the cou-
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pling over the games. Then, since π̃ is an arbitrary, not necessarily optimal strategy,

we have V π̃
α,λ∗(B′) ≤ Vα(B′). Also, since π∗

B′′ is assumed to be an optimal strategy and

λ∗ = Rev(π∗
B′′ , α) we have that Vπ∗

B′′
α,λ∗(B′′) = Vα(B′′) which gives us

Vα(B′) ≥ V π̃
α,λ∗(B′) = Vπ∗

B′′
α,λ∗(B

′′) + d = Vα(B′′) + d =⇒ Vα(B′) ≥ Vα(B′′) + d

which completes this inequality. Next, we would show that Vα(B′) ≤ Vα(B′′) + d. However,

we argue that the proof of this direction is nearly identical to the above. Actually, nowhere

in the calculate did we use the sign of d, which means that the proof works whether |TA(B
′)\

TA(B)| ≥ |TA(B
′′) \ TA(B)| or |TA(B

′) \ TA(B)| ≤ |TA(B
′′) \ TA(B)|. Therefore, we could

simply swap B′ and B′′ and run it through the same proof to get Vα(B′) ≥ Vα(B′′) + d. So,

it is shown that Vα(B′) = Vα(B′′) + d and thus the proof is complete.

As a small detail, in settingX ′
0 = B′ andX ′′

0 = B′′ in the games (X ′
t)t≥0 and (X ′′

t )t≥0, then

immediately transitioning to X
′′Half
1 ̸= B′ or X

′′Half
1 ̸= B′′, the above discussion technically

assumes that no publish action is taken at states B′ or B′′. To be complete, we would have

to show that any publish action which could be taken at state B′ has an analogous action

at state B′′ such that the rewards to these actions are related by the equality. But, this is

easy since it follows by the same reasoning as above, and so we omit it for brevity.

G.2 Omitted Proofs from Section 7.2

Proof of Theorem 7.3. Let

B = (c1γ
′
1, ..., ci∗−1γ

′
i∗−1, H,A, ci∗+2γ

′
i∗+2, ..., ct′γ

′
t′)
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be a valid state in abbreviated notation with ti∗ =
∑i∗

i=1 ci and tB =
∑t′

i=1 ci and ti∗ not a

checkpoint. Additionally, let

B′ = (c1γ
′
1, ..., ci∗−1γ

′
i∗−1, A,H, ci∗+2γ

′
i∗+2, ..., ct′γ

′
t′)

identical to B except for γ′
i∗ and γ′

i∗+1 swapped. Finally, let there be an optimal, checkpoint

recurrent, positive recurrent strategy with zero probability of ever publishing block ti∗ + 1

on block ti∗ from state B.

Let this optimal strategy be denoted π∗ let its revenue be λ∗ = Rev(π∗) = Rev(π∗).

Note that by Theorem 5.10, we may assume that π∗ is structured. As an overview, the proof

will couple states B,B′ and separately show Vα(B) ≥ Vα(B′) and Vα(B) ≤ Vα(B′) which

implies the theorem that Vα(B) = Vα(B′).

We first show that Vα(B) ≥ Vα(B′) by showing that, for strategy π∗ from B′ that achieves

value Vπ∗

α,λ∗(B′), there is a related strategy π̃ that achieves value V π̃
α,λ∗(B) = Vπ∗

α,λ∗(B′). Then,

by Lemma B.9 (Bellman’s Principle of Optimality), we know that

Vα(B) ≥ V π̃
α,λ∗(B) = Vπ∗

α,λ∗(B′) = Vα(B′)

Define a game (X ′
t)t≥0 which starts at X0 = B′. Let τ be the time such that at state

X
′Half
t , π∗ takes action PublishPath(Q′

t, v
′
t), where Q

′
t is possibly the empty set, in which case

this is just the action Wait. Additionally, let τ be the first time t ≥ 1 where π∗ capitulates

to B0 from X ′
t.

Now, define a game (Xt)t≥0 which starts at X0 = B and is coupled with the game (X ′
t)t≥0

such that for t ≥ 1, the attacker mines block t + tB in the game (Xt)t≥0 if and only if the

attacker mines block t+ tB in the game (X ′
t)t≥0. Define a mapping σ : N+ → N+ from blocks
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in X ′
t to blocks in Xt such that

σ(b) =


b b /∈ {ti∗ , ti∗ + 1}

2ti∗ + 1− b b ∈ {ti∗ , ti∗ + 1}

That is, for all blocks which are not the swapped blocks ti∗ and ti∗ + 1 in the definition

of B and B′, σ is simply the identity function. Then, for the swapped blocks, σ swaps

the timestamps on these two blocks, as desired. Also, σ is its own inverse, such that σ

presents a bijection between blocks in X ′
t to blocks in Xt. Then, let π̃ be the strategy that

for t ≤ τ , plays at state XHalf
t the action PublishPath(Qt, vt) such that vt = σ(v′t) and

Qt = {σ(q) | q ∈ Q′
t}. Additionally, let π̃ capitulate to B0 from Xτ .

We want to show that from state X0 = B to state Xτ , π̃ is a valid, checkpoint recurrent,

positive recurrent strategy that achieves value to state B exactly equal to the value π∗

achieves at state B′. Towards this purpose, we claim the following:

Claim G.1. Consider the described coupling over (Xt)t≥0 and (X ′
t)t≥0, and the constructed

strategy π̃. Then, for all t ∈ {0} ∪ [τ ],

Xt = ((V (Xt), E(Xt)),UA(Xt),UH(Xt), TA(Xt), TH(Xt))

and

X ′
t = ((V (X ′

t), E(X ′
t)),UA(X ′

t),UH(X ′
t), TA(X

′
t), TH(X

′
t))

we have that

• V (Xt) = {σ(v) | v ∈ V (X ′
t)}

• E(Xt) = {σ(u)→ σ(v) | u→ v ∈ E(X ′
t)}

228



• UA(Xt) = {σ(b) | b ∈ UA(X ′
t)}

• UH(Xt) = {σ(b) | b ∈ UH(X ′
t)}

• TA(Xt) = {σ(b) | b ∈ TA(X
′
t)}

• TH(Xt) = {σ(b) | b ∈ TH(X
′
t)}

In other words, the state Xt is almost identical to the state X ′
t up to a renaming of the blocks.

Proof. The proof is by induction on t. The base case is t = 0, where we have X0 = B and

X ′
0 = B′. We will show that the bullet points are satisfied in a slightly different order than

they appear.

By the fact that no attacker blocks are published when we use abbreviated state notation,

UA(B) = TA(B) and UA(B′) = TA(B
′). So, bullets three and five are satisfied if TA(B) =

{σ(b) | b ∈ TA(B
′)}. But, using the definition of σ, we have

TA(B) = TA

(
(c1γ

′
1, ..., ci∗−1γ

′
i∗−1)

)
∪ {ti∗ + 1} ∪ TA

(
(ci∗+2γ

′
i∗+2, ..., ct′γ

′
t′)
)

= TA

(
(c1γ

′
1, ..., ci∗−1γ

′
i∗−1)

)
∪ {σ(ti∗)} ∪ TA

(
(ci∗+2γ

′
i∗+2, ..., ct′γ

′
t′)
)

= {σ(b) | b ∈ TA

(
(c1γ

′
1, ..., ci∗−1γ

′
i∗−1)

)
} ∪ {σ(ti∗)} ∪ {σ(b) | b ∈ TA

(
(ci∗+2γ

′
i∗+2, ..., ct′γ

′
t′)
)
}

= {σ(b) | b ∈ TA

(
(c1γ

′
1, ..., ci∗−1γ

′
i∗−1)

)
∪ {ti∗} ∪ TA

(
(ci∗+2γ

′
i∗+2, ..., ct′γ

′
t′)
)
}

= {σ(b) | b ∈ TA(B
′)}

Here, the second line is due to how σ operates on ti∗ and ti∗ + 1 and the third line is due to

the fact that σ is the identity function elsewhere.

Also by the fact that no attacker blocks are published when we use abbreviated state

notation, V (B) = TH(B) and V (B′) = TH(B
′). Furthermore, by the definition of the honest

mining strategy, UH(B) = TH(B) and UH(B′) = TH(B
′). So, bullets one, four, and six are
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satisfied if TH(B) = {σ(b) | b ∈ TH(B
′)}. But, again, using the definition of σ, we have

TH(B) = TH

(
(c1γ

′
1, ..., ci∗−1γ

′
i∗−1)

)
∪ {ti∗} ∪ TH

(
(ci∗+2γ

′
i∗+2, ..., ct′γ

′
t′)
)

= TH

(
(c1γ

′
1, ..., ci∗−1γ

′
i∗−1)

)
∪ {σ(ti∗ + 1)} ∪ TH

(
(ci∗+2γ

′
i∗+2, ..., ct′γ

′
t′)
)

= {σ(b) | b ∈ TH

(
(c1γ

′
1, ..., ci∗−1γ

′
i∗−1)

)
} ∪ {σ(ti∗ + 1)} ∪ {σ(b) | b ∈ TH

(
(ci∗+2γ

′
i∗+2, ..., ct′γ

′
t′)
)
}

= {σ(b) | b ∈ TH

(
(c1γ

′
1, ..., ci∗−1γ

′
i∗−1)

)
∪ {ti∗ + 1} ∪ TH

(
(ci∗+2γ

′
i∗+2, ..., ct′γ

′
t′)
)
}

= {σ(b) | b ∈ TH(B
′)}

All that remains to be shown is the second bullet, or E(B) = {σ(u) → σ(v) | u → v ∈

E(B′)}. Once again, since no attacker blocks are published when using abbreviated state

notation and the honest miner uses the well-known strategy Honest, the only edges which

exist in E(B) are, for all i = {2, ..., h(C(B))} the ith smallest honest miner block to the

(i − 1)th smallest honest miner block and the smallest honest miner block to block 0. The

set of edges E(B′) is defined similarly. In other words

E(B) = {minTH(B)→ 0} ∪ {u→ v | v ∈ TH(B), u = min{b ∈ TH(B) | u > v}}

E(B′) = {minTH(B
′)→ 0} ∪ {u→ v | v ∈ TH(B

′), u = min{b ∈ TH(B
′) | u > v}}

The former can be expanded into the following:

E(B) = {minTH(B)→ 0}

∪ {u→ v | v ∈ TH

(
(c1γ

′
1, ..., ci∗−1γ

′
i∗−1)

)
, u = min{b ∈ TH

(
(c1γ

′
1, ..., ci∗−1γ

′
i∗−1)

)
| u > v}}

∪ {ti∗ → maxTH

(
(c1γ

′
1, ..., ci∗−1γ

′
i∗−1)

)
}

∪ {minTH

(
(ci∗+2γ

′
i∗+2, ..., ct′γ

′
t′)
)
→ ti∗}
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∪ {u→ v | v ∈ TH

(
(ci∗+2γ

′
i∗+2, ..., ct′γ

′
t′)
)
, u = min{b ∈ TH

(
(ci∗+2γ

′
i∗+2, ..., ct′γ

′
t′)
)
| u > v}}

= {minTH(B)→ σ(0)}

∪ {σ(u)→ σ(v) | v ∈ TH

(
(c1γ

′
1, ..., ci∗−1γ

′
i∗−1)

)
, u = min{b ∈ TH

(
(c1γ

′
1, ..., ci∗−1γ

′
i∗−1)

)
| u > v}}

∪ {σ(ti∗ + 1)→ σ(maxTH

(
(c1γ

′
1, ..., ci∗−1γ

′
i∗−1)

)
)}

∪ {σ(minTH

(
(ci∗+2γ

′
i∗+2, ..., ct′γ

′
t′)
)
)→ σ(ti∗ + 1)}

∪ {σ(u)→ σ(v) | v ∈ TH

(
(ci∗+2γ

′
i∗+2, ..., ct′γ

′
t′)
)
, u = min{b ∈ TH

(
(ci∗+2γ

′
i∗+2, ..., ct′γ

′
t′)
)
| u > v}}

Where we have made repeated use of the fact that σ is the identity function on all blocks

/∈ {t∗ , ti∗ + 1}. We will quickly show by case analysis that minTH(B) = σ(minTH(B
′)).

Consider two cases on minTH(B):

• minTH(B) = ti∗ : Then, minTH(B
′) = ti∗ + 1 by the relation on B and B′. But, as we

defined σ, we know that σ(ti∗ + 1) = ti∗ , so this case is complete.

• minTH(B) < ti∗ : Then minTH(B) = minTH(B
′) since both B and B′ have the same

set of blocks prior to timestamp ti∗ . Since σ is the identity function over blocks < ti∗ ,

we know that minTH(B) = σ(minTH(B)) = σ(minTH(B
′)), so this case is complete.

Now, using the fact that minTH(B) = σ(minTH(B
′)), we can simplify:

E(B) = {σ(minTH(B
′))→ σ(0)}

∪ {σ(u)→ σ(v) | v ∈ TH

(
(c1γ

′
1, ..., ci∗−1γ

′
i∗−1)

)
, u = min{b ∈ TH

(
(c1γ

′
1, ..., ci∗−1γ

′
i∗−1)

)
| b > v}}

∪ {σ(ti∗ + 1)→ σ(maxTH

(
(c1γ

′
1, ..., ci∗−1γ

′
i∗−1)

)
)}

∪ {σ(minTH

(
(ci∗+2γ

′
i∗+2, ..., ct′γ

′
t′)
)
)→ σ(ti∗ + 1)}

∪ {σ(u)→ σ(v) | v ∈ TH

(
(ci∗+2γ

′
i∗+2, ..., ct′γ

′
t′)
)
, u = min{b ∈ TH

(
(ci∗+2γ

′
i∗+2, ..., ct′γ

′
t′)
)
| b > v}}

= {σ(minTH(B
′))→ σ(0)} ∪ {σ(u)→ σ(v) | v ∈ TH(B

′), u = min{b ∈ TH(B
′) | b > v}}
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= {u→ v | u→ v ∈ E(B′)}

Here, the second line simplifies the union of these sets except for {σ(ti∗ + 1) → σ(0)} and

and the third line simplifies using the definition of E(B′) given above. Therefore, the base

case is proven.

Now, for the inductive step, assume that the statement is true for some t = k. Now,

we will show that the statement is true for t = k + 1. First, we will show that the same

equalities hold over XHalf
k+1 and X

′Half
k+1 . Note XHalf

k+1 is Xk followed by some miner mining

a block, then, in the case that the honest miner mined the block, further followed by the

honest miner publishing that block. The same is true for X
′Half
k+1 . Let’s consider the two

cases over who mines block k + 1 + tB.

First, let k + 1 + tB ∈ TH(Xk+1) (⇐⇒ k + 1 + tB ∈ TH(X
′
k+1) by the coupling). Then,

we have

Tree(XHalf
k+1 ) = (V (Xk) ∪ {k + 1 + tB}, E(Xk) ∪ {k + 1 + tB → C(Xk)})

Tree(X
′Half
k+1 ) = (V (X ′

k) ∪ {k + 1 + tB}, E(X ′
k) ∪ {k + 1 + tB → C(X ′

k)})

XHalf
k+1 =

(
Tree(XHalf

k+1 ),UA(Xk),UH(Xk), TA(Xk), TH(Xk) ∪ {k + 1 + tB}
)

X
′Half
k+1 =

(
Tree(X

′Half
k+1 ),UA(X ′

k),UH(X ′
k), TA(X

′
k), TH(X

′
k) ∪ {k + 1 + tB}

)

Then, by the inductive hypothesis we can show each equality in the claim:

• V (XHalf
k+1 ) = {σ(v) | v ∈ V (X

′Half
k+1 )}:

V (XHalf
k+1 ) = V (Xk) ∪ {k + 1 + tB}

= {σ(v) | v ∈ V (X ′
k)} ∪ {σ(k + 1 + tB)}
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= {σ(v) | v ∈ V (X ′
k) ∪ {σ(k + 1 + tB)}}

= {σ(v) | v ∈ V (X
′Half
k+1 )}

• E(XHalf
k+1 ) = {σ(u) → σ(v) | u → v ∈ E(X

′Half
k+1 )}: As a notational convenience, let

function A′(b) and h′(b) be the ancestors and height of a block b respectively in the game

(X ′
t)t≥0. First, consider that, by the inductive hypothesis, A(σ(b)) = {σ(q) | q ∈ A′(b)}.

This is because an edge u→ v exists in E(X ′
k) if and only if edge σ(u)→ σ(v) exists in

E(Xk). So we can apply the σ function to each block in X ′
k in the directed path from b

to the genesis block, which defines the ancestors of b, and obtain the ancestors of σ(b)

in Xk. Since height is defined by the number of ancestors a block has, this tells us that

h(σ(b)) = h′(b). This also holds for the longest chain, or h(σ(C(X ′
k))) = h′(C(X ′

k)).

Then, we must have h(C(Xk)) = h′(C(X ′
k)). But, since π∗ is timeserving, at any

state X ′
k there is a unique block with height h′(C(X ′

k)). We have already argued that

h(σ(b)) = h′(b), so a unique longest chain in X ′
k implies a unique longest chain in Xk.

Therefore, since block σ(C(X ′
k)) achieves height h(σ(C(X ′

k))) = h′(C(X ′
k)) = h(C(Xk)),

it must be that σ(C(X ′
k)) = C(Xk). That is, σ(C(X ′

k)) must be the unique longest

chain at Xk.

Now, we can show the result on the edges at XHalf
k+1 :

E(XHalf
k+1 ) = E(Xk) ∪ {k + 1 + tB → C(Xk)}

= {σ(u)→ σ(v) | u→ v ∈ E(X ′
k)} ∪ {σ(k + 1 + tB)→ C(Xk)}

= {σ(u)→ σ(v) | u→ v ∈ E(X ′
k)} ∪ {σ(k + 1 + tB)→ σ(C(X ′

k))}

= {σ(u)→ σ(v) | u→ v ∈ E(X ′
k) ∪ {k + 1 + tB → C(X ′

k)}}

= {σ(u)→ σ(v) | u→ v ∈ E(X
′Half
k+1 )}
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• UA(XHalf
k+1 ) = {σ(b) | b ∈ UA(X

′Half
k+1 )}:

UA(XHalf
k+1 ) = UA(Xk)

= {σ(b) | b ∈ UA(X ′
k)}

= {σ(b) | b ∈ UA(X
′Half
k+1 )}

• UH(XHalf
k+1 ) = {σ(b) | b ∈ UH(X

′Half
k+1 )}:

UH(XHalf
k+1 ) = UH(Xk)

= {σ(b) | b ∈ UH(X ′
k)}

= {σ(b) | b ∈ UH(X
′Half
k+1 )}

• TA(X
Half
k+1 ) = {σ(b) | b ∈ TA(X

′Half
k+1 )}:

TA(X
Half
k+1 ) = TA(Xk)

= {σ(b) | b ∈ TA(X
′
k)}

= {σ(b) | b ∈ TA(X
′Half
k+1 )}

• TH(X
Half
k+1 ) = {σ(b) | b ∈ TH(X

′Half
k+1 )}:

TH(X
Half
k+1 ) = TH(Xk) ∪ {k + 1 + tB}

= TH(Xk) ∪ {σ(k + 1 + tB)}

= {σ(b) | b ∈ TH(X
′
k)} ∪ {σ(k + 1 + tB)}

= {σ(b) | b ∈ TH(X
′
k) ∪ {k + 1 + tB}}

= {σ(b) | b ∈ TH(X
′Half
k+1 )}
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Now, let k + 1 + tB ∈ TA(Xk+1) ( ⇐⇒ k + 1 + tB ∈ TA(X
′
k+1) by the coupling). Then,

we have

XHalf
k+1 = ((V (Xk), E(Xk)),UA(Xk) ∪ {k + 1 + tB},UH(Xk), TA(Xk) ∪ {k + 1 + tB}, TH(Xk))

X
′Half
k+1 = ((V (X ′

k), E(X ′
k)),UA(X ′

k) ∪ {k + 1 + tB},UH(X ′
k), TA(X

′
k) ∪ {k + 1 + tB}, TH(X

′
k))

Then, by the inductive hypothesis we can show each equality in the claim:

• V (XHalf
k+1 ) = {σ(b) | b ∈ V (X

′Half
k+1 )}:

V (XHalf
k+1 ) = V (Xk) = {σ(b) | b ∈ V (X ′

k)} = {σ(b) | b ∈ V (X
′Half
k+1 )}

• E(XHalf
k+1 ) = {σ(u)→ σ(v) | u→ v ∈ E(X

′Half
k+1 )}:

E(XHalf
k+1 ) = E(Xk) = {σ(u)→ σ(v) | u→ v ∈ E(X ′

k)} = {σ(u)→ σ(v) | u→ v ∈ E(X
′Half
k+1 )}

• UA(XHalf
k+1 ) = {σ(b) | b ∈ UA(X

′Half
k+1 )}:

UA(XHalf
k+1 ) = UA(Xk) ∪ {k + 1 + tB}

= UA(Xk) ∪ {σ(k + 1 + tB)}

= {σ(b) | b ∈ UA(X ′
k)} ∪ {σ(k + 1 + tB}

= {σ(b) | b ∈ UA(X ′
k) ∪ {k + 1 + tB}}

= {σ(b) | b ∈ UA(X
′Half
k+1 )}

• UH(XHalf
k+1 ) = {σ(b) | b ∈ UH(X

′Half
k+1 )}: This proof is identical to that in the case of

k + 1 + tB ∈ TH(Xk+1).

235



• TA(X
Half
k+1 ) = {σ(b) | b ∈ TA(X

′Half
k+1 )}:

TA(X
Half
k+1 ) = TA(Xk) ∪ {k + 1 + tB}

= TA(Xk) ∪ {σ(k + 1 + tB)}

= {σ(b) | b ∈ TA(X
′
k)} ∪ {σ(k + 1 + tB}

= {σ(b) | b ∈ TA(X
′
k) ∪ {k + 1 + tB}}

= {σ(b) | b ∈ TA(X
′Half
k+1 )}

• TH(X
Half
k+1 ) = {σ(b) | b ∈ TH(X

′Half
k+1 )}:

TH(X
Half
k+1 ) = TH(Xk) = {σ(b) | b ∈ TH(X

′
k)} = {σ(b) | b ∈ TH(X

′Half
k+1 )}

So, it is shown that XHalf
k+1 and X

′Half
k+1 are related by the same equalities as Xk and X ′

k

whether the attacker or the honest miner mines block k+1+ tB. Now, we want to show that

PublishPath(Qk+1, vk+1) is a valid, checkpoint recurrent action at state XHalf
k+1 that yields

state Xk+1. Then, we will finally show that if π∗’s action PublishPath(Q′
k+1, v

′
k+1) at state

X
′Half
k+1 yields X ′

k+1, then Xk+1 and X ′
k+1 are related by the equalities in the claim.

First, we will show that vk+1 = σ(v′k+1) is bound to exist in the block tree at state XHalf
k+1 .

Since we have shown that V (XHalf
k+1 ) = {σ(v′) | v′ ∈ V (X

′Half
k+1 )}, this reduces to showing

that v′k+1 ∈ V (X
′Half
k+1 ). But, this clearly must be true or else it contradicts the validity of

π∗’s action at X
′Half
k+1 .

Next, we will show that Qk+1 ⊆ UA(XHalf
k+1 ). From the definition of Qk+1 and the fact

that Q′
k+1 ⊆ UA(X

′Half
k+1 ) in order for π∗’s action to be valid, we have

Qk+1 = {σ(q) | q ∈ Q′
k+1} ⊆ {σ(q) | q ∈ UA(X

′Half
k+1 )} = UA(XHalf

k+1 )
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so this is shown.

As the final step to show that the action is valid, let’s show that vk+1 < minQk+1. Since

σ(b) ≥ b for all b ̸= ti∗ + 1 and we know that ti∗ + 1 /∈ Q′
k+1 since ti∗ + 1 /∈ TA(X

′Half
k+1 ), we

can write

minQk+1 = min{σ(q) | q ∈ Q′
k+1} = σ(minQ′

k+1).

We can also show that σ(v′k+1) < σ(minQ′
k+1). Clearly, by the validity of π∗’s action, we

have v′k+1 < minQ′
k+1. Since σ is the identity function everywhere except {ti∗ , ti∗ + 1}, the

only problems we may have in showing σ(v′k+1) < σ(minQ′
k+1) is if v′k+1 ∈ {ti∗ , ti∗ + 1} or

minQ′
k+1 ∈ {ti∗ , ti∗ +1}. We have already showed that minQ′

k+1 ̸= ti∗ +1 since the attacker

does not own this block at X
′Half
k+1 . So, we are left with six cases:

• v′k+1 /∈ {ti∗ , ti∗ + 1}, minQ′
k+1 ̸= ti∗ : Then, σ is the identity function and σ(v′k+1) =

v′k+1 < minQ′
k+1 = σ(minQ′

k+1), so this case is complete.

• v′k+1 /∈ {ti∗ , ti∗ +1}, minQ′
k+1 = ti∗ : Then, we have σ(v

′
k+1) = v′k+1 and σ(minQ′

k+1) >

minQ′
k+1 such that σ(v′k+1) = v′k+1 < minQ′

k+1 < σ(minQ′
k+1), so this case is complete.

• v′k+1 = ti∗ , minQ′
k+1 ̸= ti∗ : Then, we have σ(v′k+1) > v′k+1 and σ(minQ′

k+1) =

minQ′
k+1. However, since v′k+1 = ti∗ < minQ′

k+1 and minQ′
k+1 cannot be ti∗ + 1

by the discussion above, we must have minQ′
k+1 > ti∗ + 1. So, we find σ(v′k+1) =

ti∗ + 1 < minQ′
k+1 = σ(minQ′

k+1). Thus, this case is complete.

• v′k+1 = ti∗ , minQ′
k+1 = ti∗ : This case cannot occur because π∗ is assumed to be valid

such that ti∗ cannot exist both in the block tree and the unpublished set.

• v′k+1 = ti∗ + 1, minQ′
k+1 ̸= ti∗ : Then, we have σ(v′k+1) < v′k+1 and σ(minQ′

k+1) =

minQ′
k+1 such that σ(v′k+1) < v′k+1 < minQ′

k+1 = σ(minQ′
k+1), so this case is complete.
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• v′k+1 = ti∗ +1, minQ′
k+1 = ti∗ : This case cannot occur because v

′
k+1 > minQ′

k+1, which

cannot be true for a valid action.

Therefore, in all cases, we find that σ(v′k+1) < σ(minQ′
k+1) which implies that vk+1 =

σ(v′k+1) < σ(minQ′
k+1) = minQk+1 and thus concludes the proof that at state XHalf

k+1 , the

action PublishPath(Qk+1, vk+1) is valid.

To show that the action PublishPath(Qk+1, vk+1) is checkpoint recurrent at state XHalf
k+1 ,

we have to show that it does not fork a checkpoint and that, if it establishes a checkpoint,

the attacker owns no unpublished blocks greater than this checkpoint. Recall that we have

already shown that for any block b ∈ V (XHalf
k+1 ), we have h(σ(b)) = h′(b) such that h(vk+1) =

h(σ(v′k+1)) = h′(v′k+1). Also, we have already shown that h(C(XHalf
k+1 )) = h′(C(X ′Half

k+1 )).

Then, since we have assumed π∗ to be timeserving and clearly have |Qk+1| = |Q′
k+1| by

definition, the action PublishPath(Qk+1, vk+1) must also be timeserving, since maxQk+1 must

reach height

h(vk+1) + |Qk+1| = h′(v′k+1) + |Q′k + 1| > h′(C(X ′Half
k+1 )) = h(C(XHalf

k+1 ))

So, the action may indeed fork blocks. Additionally, since we know that v′k+1 ∈ A′(C(X ′Half
k+1 ))

by the assumption that π∗ is LPM and we have previously shown A(σ(b)) = {σ(q) | q ∈

A′(b)} and C(XHalf
k+1 ) = σ(C(X ′Half

k+1 )), we can easily show that vk+1 ∈ A(C(XHalf
k+1 )):

vk+1 = σ(v′k+1) ∈ {σ(q) | q ∈ A′(C(X ′Half
k+1 ))} = A(σ(C(X ′Half

k+1 ))) = A(C(XHalf
k+1 ))

This allows us to claim that A(vk+1) ⊆ A(C(XHalf
k+1 )). Now, consider the blocks forked by

this publish action. In particular, it forks blocks A(C(XHalf
k+1 )) \ A(vk+1). However, using

238



previously derived facts, we can simplify this to

A(C(XHalf
k+1 )) \ A(vk+1) = A(σ(C(X ′Half

k+1 ))) \ A(σ(v′k+1))

= {σ(q) | q ∈ A′(C(X ′Half
k+1 ))} \ {σ(q) | q ∈ A′(v′k+1)}

= {σ(q) | q ∈ A′(C(X ′Half
k+1 )) \ A′(v′k+1)}

But, A′(C(X ′Half
k+1 ))\A′(v′k+1) is exactly the set of blocks forked by π∗’s action. So, this result

states that the blocks forked by π̃’s action are the same as those forked by π∗’s action up

to a renaming. So, we want to show that σ(q) is a checkpoint at XHalf
k+1 if and only if q is a

checkpoint atX
′Half
k+1 . Then, we could suppose for contradiction that PublishPath(Qk+1, vk+1)

forks some checkpoint σ(q). This would mean that π∗ forks q ∈ A′(C(X ′Half
k+1 )) \ A′(v′k+1),

where q is a checkpoint. But, we have assumed π∗ to be checkpoint recurrent such that this

would be a contradiction and so it would be shown PublishPath(Qk+1, vk+1) does not fork a

checkpoint.

Towards showing that σ(q) is a checkpoint at XHalf
k+1 if and only if q is a checkpoint at

X
′Half
k+1 , first consider that since π∗ is opportunistic, if it establishes a checkpoint, then it

subsequently capitulates to B0. So, we know that π∗ may only establish a checkpoint at

time t = τ . Yet, we have k + 1 ≤ τ so the only checkpoints that may exist at X
′Half
k+1

are those which also existed at B′. Furthermore, since we know that the attacker has not

published any blocks at B′ and the attacker’s minimum unpublished block at B′ is at most

ti∗ , no block ≥ ti∗ can be a checkpoint at X
′Half
k+1 . Since the mining sequences prior to ti∗ are

the same in B and B′ and σ is the identity function over this range, these states must have

the same set of checkpoints prior to ti∗ . Then, looking at state B, by the same logic there

cannot exist a checkpoint ≥ ti∗ + 1. Also, block ti∗ in B is not a checkpoint by assumption,

which means that in fact no block ≥ ti∗ can be a checkpoint at B. Therefore, states B, B′,

and X
′Half
k+1 have the exact same checkpoints. Now, to complete the proof of the claim on
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checkpoints, we just have to show that no checkpoint was established in (Xt)t≥0 between B

and XHalf
k+1 . The proof is by contradiction. Suppose that some checkpoint was established

between B and XHalf
k+1 and consider the first such checkpoint v = σ(v′) for some v′. Since

actions by π̃ were already shown to be timeserving, honest blocks in the longest chain which

are not checkpoints at B will never be checkpoints at any subsequent state. This says that ti∗

cannot be a checkpoint at XHalf
k+1 such that v ̸= ti∗ or equivalently v′ ̸= ti∗ +1. Then, denote

state Xc for c < k + 1 to be the state directly following the action which established this

checkpoint and denote Pi−1 to be the most previous checkpoint to σ(v′). By the discussion

above, prior to establishing this checkpoint in (Xt)t≥0, the most recent checkpoint in (Xt)t≥0

and (X ′
t)t≥0 must be the same and must be < ti∗ , such that Pi−1 = P ′

i−1 = σ(P ′
i−1). Now,

we will directly derive the contradiction by showing that this checkpoint at XHalf
k+1 implies

a checkpoint v′ at X
′Half
k+1 , which we know not to be true. Starting from the definition of a

checkpoint:

|A′(C(Xc)) ∩ (P ′
i−1, v

′] ∩ TA(Xc)|

= |{σ(q) | q ∈ {A′(C(X ′Half
c )) ∩ (P ′

i−1, v
′] ∩ TA(Xc)}|

= |{σ(q) | q ∈ {A′(C(Xc))} ∩ {σ(q) | q ∈ (P ′
i−1, v

′]} ∩ {σ(q) | q ∈ TA(Xc)}|

= |A(σ(C(Xc))) ∩ {σ(q) | q ∈ (P ′
i−1, v

′]} ∩ TA(Xc|

= |A(σ(C(Xc))) ∩ (σ(P ′
i−1), σ(v

′)] ∩ TA(Xc|

= |A(C(XHalf
c )) ∩ (Pi−1, v] ∩ TA(Xc)|

≥ |UA(Xc) ∩ (Pi−1, v]|

= |{σ(q) | q ∈ UA(Xc) ∩ (P ′
i−1, v

′]}|

= |UA(Xc) ∩ (P ′
i−1, v

′]|

Here, the inequality is by the fact that v is assumed to be a checkpoint. For the fifth line,
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consider that {σ(q) | q ∈ (P ′
i−1, v

′]} = (σ(P ′
i−1), σ(v

′)] everywhere except v′k+1 ∈ {ti∗ , ti∗ +1}.

We already know that v′ ̸= ti∗ + 1. For v′ = ti∗ , we have that {σ(q) | q ∈ (P ′
i−1, v

′]} =

(σ(P ′
i−1), σ(v

′)] \ ti∗ . However, ti∗ /∈ TA(X
Half
c ) so even in the case of v′ = ti∗ it is true that

{σ(q) | q ∈ (P ′
i−1, v

′]} ∩ TA(X
Half
c ) =

(
(σ(P ′

i−1), σ(v
′)] \ ti∗

)
∩ TA(X

Half
c ) = (σ(P ′

i−1), σ(v
′)]∩

TA(X
Half
c ). So, this line indeed follows. So, it is shown that if v is a checkpoint at Xc, then

v′ is a checkpoint at X ′
c which is a contradiction and so there must not exist any checkpoints

in XHalf
k+1 which do not exist in X

′Half
k+1 . As previously stated, this implies the claim that

PublishPath(Qk+1, vk+1) does not fork a checkpoint.

Now, we show that, if PublishPath(Qk+1, vk+1) establishes a checkpoint, π̃ owns no un-

published blocks greater than this checkpoint. But, again, we know that σ(q) is a checkpoint

at XHalf
k+1 if and only if q is a checkpoint at X

′Half
k+1 . So, PublishPath(Qk+1, vk+1) establishes

some checkpoint σ(q), so too does PublishPath(Q′
k+1, v

′
k+1) establish a checkpoint. Then,

since π∗ is assumed to be opportunistic, we know that Q′
k+1 = UA(X

′Half
k+1 ) ∩ (v′k+1,∞). We

can use this to show that if PublishPath(Qk+1, vk+1) establishes a checkpoint, then π̃ owns

no blocks greater than this just-established checkpoint:

Qk+1 = {σ(b) | b ∈ Q′
k+1}

= {σ(b) | b ∈ UA(X
′Half
k+1 ) ∩ (v′k+1,∞)}

= {σ(b) | b ∈ UA(X
′Half
k+1 )} ∩ {σ(b) | b ∈ (v′k+1,∞)}

= UA(XHalf
k+1 ) ∩ {σ(b) | b ∈ (v′k+1,∞)}

Here the third line is due to the fact that σ is invertible. Now, consider that (σ(v′k+1),∞) =

{σ(b) | b ∈ (v′k+1,∞)} everywhere except v′k+1 = ti∗ + 1. So, if v′k+1 ̸= ti∗ + 1, we have the

following, which shows that this action is opportunistic and so π̃ does not own any blocks
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greater than this just-established checkpoint:

Qk+1 = UA(XHalf
k+1 ) ∩ {σ(b) | b ∈ (v′k+1,∞)}

= UA(XHalf
k+1 ) ∩ (σ(v′k+1),∞)

= UA(XHalf
k+1 ) ∩ (vk+1,∞)

On the other hand, if v′k+1 = ti∗ + 1 we have {σ(b) | b ∈ (ti∗ + 1,∞)} = (ti∗ ,∞) \ {ti∗ + 1}

such that

Qk+1 = UA(XHalf
k+1 ) ∩ {σ(b) | b ∈ (v′k+1,∞)}

= UA(XHalf
k+1 ) ∩ {σ(b) | b ∈ (ti∗ + 1,∞)}

= UA(XHalf
k+1 ) ∩ (σ(ti∗ + 1),∞) \ {ti∗ + 1}

= UA(XHalf
k+1 ) ∩ (ti∗ ,∞) \ {ti∗ + 1}

= UA(XHalf
k+1 ) ∩ (ti∗ + 1,∞)

So, showing that this case is opportunistic reduces to showing that, if this action establishes

a checkpoint, this checkpoint is some block > ti∗ + 1. But, recall that σ(q) is a checkpoint

at XHalf
k+1 if and only if q is a checkpoint at X

′Half
k+1 . Furthermore, all blocks published by π∗

at state X
′Half
k+1 are > ti∗ + 1 by virtue of v′k+1 = ti∗ + 1. So, if π∗ establishes a checkpoint in

this publish action then this new checkpoint is some block q > ti∗ + 1. Then, since σ is just

the identity function over this range, we know that the checkpoint established at XHalf
k+1 is

some block σ(q) = q > ti∗ + 1. Thus, since π̃ publishes all unpublished blocks > ti∗ + 1, it

certainly does not own a block greater than the just-established checkpoint. This completes

the proof that the action PublishPath(Qk+1, vk+1) is checkpoint recurrent at state XHalf
k+1 .

In summary, we have shown that π̃’s action at state XHalf
k+1 is valid and checkpoint re-

current. Now, we proceed to show that state Xk+1, which follows π̃’s action at state XHalf
k+1 ,
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and state X ′
k+1, which follows π̃’s action at state X

′Half
k+1 , are related by the equalities in the

claim. First, let’s express these states.

E(Xk+1) = E(XHalf
k+1 )

∪ {minQk+1 → vk+1}

∪ {u→ v | v ∈ Qk+1, u = min{q ∈ Qk+1 | q > v}}

E(X ′
k+1) = E(X

′Half
k+1 )

∪ {minQ′
k+1 → v′k+1}

∪ {u→ v | v ∈ Q′
k+1, u = min{q ∈ Q′

k+1 | q > v}}

Tree(Xk+1) = (V (XHalf
k+1 ) ∪Qk+1, E(Xk+1)})

Tree(X ′
k+1) = (V (X

′Half
k+1 ) ∪Q′

k+1, E(X ′
k+1)})

Xk+1 =
(
Tree(Xk+1),UA(XHalf

k+1 ) \Qk+1,UH(XHalf
k+1 ), TA(X

Half
k+1 ), TH(X

Half
k+1 )

)
X ′

k+1 =
(
Tree(X ′

k+1),UA(X
′Half
k+1 ) \Q′

k+1,UH(X
′Half
k+1 ), TA(X

′Half
k+1 ), TH(X

′Half
k+1 )

)

Now, we can show each equality in the claim using the relation betweenXHalf
k+1 andX

′Half
k+1 :

• V (Xk+1) = {σ(v) | v ∈ V (X ′
k+1)}:

V (Xk+1) = V (XHalf
k+1 ) ∪Qk+1

= {σ(v) | v ∈ V (X
′Half
k+1 )} ∪ {σ(v) | v ∈ Q′

k+1}

= {σ(v) | v ∈ V (X
′Half
k+1 ) ∪Q′

k+1}

= {σ(v) | v ∈ V (X ′
k+1)}
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• E(Xk+1) = {σ(u)→ σ(v) | u→ v ∈ E(X ′
k+1)}: Recall, it has already been shown that

σ(minQ′
k+1) = minQk+1 and σ(v′k+1) = vk+1 by definition.

E(Xk+1) = E(XHalf
k+1 )

∪ {minQk+1 → vk+1}

∪ {u→ v | v ∈ Qk+1, u = min{q ∈ Qk+1 | q > v}}

= {σ(u)→ σ(v) | u→ v ∈ E(X
′Half
k+1 )}

∪ {σ(minQ′
k+1)→ σ(v′k+1)}

∪ {u→ v | v ∈ {σ(q) | q ∈ Q′
k+1}, u = min{q ∈ {σ(q′) | q′ ∈ Q′

k+1} | q > v}}

= {σ(u)→ σ(v) | u→ v ∈ E(X
′Half
k+1 )}

∪ {σ(minQ′
k+1)→ σ(v′k+1)}

∪ {σ(u)→ σ(v) | v ∈ Q′
k+1, u = min{q′ ∈ Q′

k+1 | σ(q′) > σ(v)}}

= {σ(u)→ σ(v) | u→ v ∈ E(X
′Half
k+1 )}

∪ {σ(minQ′
k+1)→ σ(v′k+1)}

∪ {σ(u)→ σ(v) | v ∈ Q′
k+1, u = min{q′ ∈ Q′

k+1 | q′ > v}}

= {σ(u)→ σ(v) | u→ v ∈ E(X
′Half
k+1 )

∪ {minQ′
k+1 → v′k+1}

∪ {u→ v | v ∈ Q′
k+1, u = min{q′ ∈ Q′

k+1 | q′ > v}}

= {σ(u)→ σ(v) | u→ v ∈ E(X ′
k+1)}

244



Here, the fourth line is due to the fact that Q′
k+1 cannot contain both ti∗ and ti∗ + 1

such that for q, v ∈ Q′
k+1 we have q > v ⇐⇒ σ(q) > σ(v) by the properties of σ.

• UA(Xk+1) = {σ(b) | b ∈ UA(X ′
k+1)}:

UA(Xk+1) = UA(XHalf
k+1 ) \Qk+1

= {σ(b) | b ∈ UA(X
′Half
k+1 )} \ {σ(b) | b ∈ Q′

k+1}

= {σ(b) | b ∈ UA(X
′Half
k+1 ) \Q′

k+1}

= {σ(b) | b ∈ UA(X ′
k+1)}

• UH(Xk+1) = {σ(b) | b ∈ UH(X ′
k+1)}:

UH(Xk+1) = UH(XHalf
k+1 ) = {σ(b) | b ∈ UH(X

′Half
k+1 )} = {σ(b) | b ∈ UH(X ′

k+1)}

• TA(Xk+1) = {σ(b) | b ∈ TA(X
′
k+1)}:

TA(Xk+1) = TA(X
Half
k+1 ) = {σ(b) | b ∈ TA(X

′Half
k+1 )} = {σ(b) | b ∈ TA(X

′
k+1)}

• TH(Xk+1) = {σ(b) | b ∈ TH(X
′
k+1)}:

TH(Xk+1) = TH(X
Half
k+1 ) = {σ(b) | b ∈ TH(X

′Half
k+1 )} = {σ(b) | b ∈ TH(X

′
k+1)}

Finally, the inductive step is shown. Therefore, the statement holds for all t ∈ {0} ∪ [τ ]

and thus completes proof of the claim.

Given, the claim, the rest of the proof is easy. Through the proof of the claim, we have

already shown that π̃ is a valid checkpoint recurrent strategy. Furthermore, π̃ is easily posi-
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tive recurrent since it capitulates to B0 at Xτ , where we know that τ is finite in expectation

by the fact that π∗ is positive recurrent. Now, all that remains to be shown is that the value

to state B achieves by π̃ is equal to the value of state B′ achieved by π∗. These values can

be expressed as:

V π̃
α,λ∗(B) = rλ∗(B,Xτ ) + V π̃

α,λ∗(Xτ ) = rλ∗(B,Xτ )

Vπ∗

α,λ∗(B′) = rλ∗(B′, X ′
τ ) + Vπ∗

α,λ∗(X ′
τ ) = rλ∗(B′, X ′

τ )

So, this reduces to showing that rλ∗(B,Xτ ) = rλ∗(B′, X ′
τ ). But, by the claim, since states

Xτ and X ′
τ and especially block trees at these states are identical up to a renaming of the

blocks, there must be an equal number of attacker blocks (honest miner blocks) in the longest

chain at Xτ as there are attacker blocks (honest miner blocks) in the longest chain at X ′
τ .

Furthermore, neither B nor B′ have any attacker blocks in the longest chain and there are

an equal number of honest miner blocks in the longest chain at B and B′. Altogether, this

implies that these quantities must be equal, since the difference between attacker blocks

(honest miner blocks) at Xτ and B must be equal to the difference between attacker blocks

(honest miner blocks) at X ′
τ and B′. Therefore, it is shown that V π̃

α,λ∗(B) = Vπ∗

α,λ∗(B′) and

so

Vα(B) ≥ V π̃
α,λ∗(B) = Vπ∗

α,λ∗(B′) = Vα(B′)

Next, we would show that Vα(B) ≤ Vα(B′). However, we argue that since σ is its own

inverse, the proof of this direction is nearly identical to the above, with the exception of

edges cases on blocks ti∗ and ti∗ + 1. That is, we would keep all the definitions the same

except for playing π∗ in the game (Xt)t≥0 and an analogously constructed π̃ in the game

(X ′
t)t≥0.
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In fact, we claim that the only difference between this proof would be the case which

handles vk+1 = ti∗ and minQk+1 = ti∗ +1 when showing that σ(vk+1) < σ(minQk+1) as part

of the proof that the action PublishPath(Q′
k+1, v

′
k+1) at state X

′Half
k+1 is valid. On the surface,

it appears that σ(vk+1) = ti∗ + 1 > ti∗ = σ(minQk+1). But, by our assumption that π∗ does

not publish ti∗ + 1 on ti∗ from B this case actually cannot occur. Indeed, this is one of the

few places in the proof where this assumption would be used.

So, will omit the full proof of Vα(B) ≤ Vα(B′) here for brevity, though it is nonetheless

true. So, it is shown that Vα(B) = Vα(B′) and thus the proof is complete.

There are a few final notes about this proof. First, following the example of Ferreira and

Weinberg [4], we don’t need to consider that π∗ capitulates to states other than B0, because

any strategy which does capitulate to some state other than B0 can simply be rewritten as a

strategy which does not capitulate to any other states other than B0. Second, similar to the

proof of Theorem 7.2 there is a small technicality with this proof. In setting X0 = B and

X ′
0 = B′ in the games (Xt)t≥0 and (X ′

t)t≥0, then immediately transitioning to X
′Half
1 ̸= B or

X
′Half
1 ̸= B′, the above discussion actually assumes that no publish action is taken at states

B or B′. To be complete, we would have to show that any publish action which could be

taken at state B has an analogous action at state B′ such that the rewards to these actions

are equal and the resulting states are related as described in the claim. But, this is easy

since it follows by the same reasoning as above, and so we omit it for brevity.
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H Omitted Proofs from Section 8

H.1 Omitted Proofs from Section 8.1

Proof of Theorem 8.1. Let α be the attacker’s probability of mining the next block, π∗ be

an optimal structured strategy, and λ∗ = Rev(π∗, α). Now consider a state B1,x for x >

1−α−λ∗+αλ∗

α−λ∗+αλ∗ .

First, we will show that π∗ never publishes block 1. The proof is by contradiction.

Suppose that π∗ eventually publishes block 1. More specifically, for game (Xt)t≥0 with

X0 = B1,x, let the strategy publish block 1 at state XHalf
τ with action PublishPath(Qτ , 0).

Note that the block being published on must be block 0 because this is the only block that

block 1 may be published on. Since π∗ is timeserving, when it publishes block 1, it must fork

all blocks in the longest path at XHalf
τ except for block 0. Since π∗ is checkpoint recurrent,

no checkpoint may among these forked blocks, such that block 0 must be the only checkpoint

at XHalf
τ . By the same reasoning, at Xτ , the longest path is simply Qτ . Then, since π∗ is

orderly, Qτ must be the |Qτ | smallest unpublished blocks that can be published on block 0

such that the attacker owns no unpublished block ≤ maxQτ at Xτ . Therefore,

|A(C(Xτ )) ∩ (0,maxQτ ] ∩ TA(Xτ )| = |Qτ ∩ (0,maxQτ ] ∩ TA(Xτ )|

= |Qτ |

≥ 0

= |UA(Xτ ) ∩ (0,maxQ]|

which witnesses that maxQτ must be a checkpoint. So, it is shown that if π∗ ever publishes

block 1, then it necessarily creates a checkpoint with this publish action.

Then, since π∗ is opportunistic, if a checkpoint is established at Xτ , then π∗ capitulates

from Xτ to B0 such that Vπ∗

α,λ∗(Xτ ) = 0. Therefore, we can easily calculate the reward to
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this action:

Vπ∗

α,λ∗(XHalf
τ ) = rλ∗(XHalf

τ , Xτ ) + Vπ∗

α,λ∗(Xτ ) = rλ∗(XHalf
τ , Xτ )

To express rλ∗(XHalf
τ , Xτ ), let there be ℓA attacker blocks and ℓH honest miner blocks in the

longest chain at XHalf
τ . So,

rλ∗(XHalf
τ , Xτ ) = |Qτ |(1− λ∗)− (ℓA(1− λ∗) + ℓH(−λ∗))

Now, consider an alternate strategy π̃ at XHalf
τ which instead waits until the first time

τ ′ ≥ τ such that

|TA(Xτ ′) \ TA(Xτ )|+ (x− 1) = |TH(Xτ ′) \ TH(Xτ )|

then takes action PublishPath((Qτ \ {1}) ∪ (TA(Xτ ′) \ TA(Xτ )) , x + 1) at state XHalf
τ ′ and

capitulates to B0. That is, τ
′ is the first time after τ such that the honest miner has mined

x− 1 more blocks than the attacker between Xτ and Xτ ′ . So, π̃ essentially selfish mines on

the blocks in excess of those needed to publish on x+ 1 at Xτ . Let’s quickly show that π̃ is

valid, checkpoint recurrent, and positive recurrent.

Clearly, all blocks in (Qτ \ {1})∪(TA(Xτ ′) \ TA(Xτ )) are unpublished blocks owned by the

attacker at Xτ ′ . That is, blocks Qτ \ {1} are unpublished at XHalf
τ ′ by virtue of π∗ trying to

publish these blocks at XHalf
τ and π̃ playing Wait until τ ′. Also, blocks (TA(Xτ ′) \ TA(Xτ ))

are unpublished at XHalf
τ ′ because π̃ plays Wait from XHalf

τ (inclusive) to XHalf
τ ′ (exclusive).

Also, we know that all blocks in this set are greater than x+1 because the only block owned

by the attacker which is not greater than x+1 is block 1, which is not in the set by definition.

So, the action is valid.

Next, we have already shown that there are no checkpoints at XHalf
τ aside from the
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genesis block. Between XHalf
τ and XHalf

τ ′ , only honest miner blocks will be published. But,

an honest miner block only becomes a checkpoint if it is published on a checkpoint and these

honest miner blocks are certainly not published on the genesis block since the genesis block

cannot be the longest chain for any state following XHalf
τ . Therefore, no further checkpoints

are established between XHalf
τ and XHalf

τ ′ . Therefore, π̃’s action cannot fork a checkpoint.

Next, we will show that the action is opportunistic, which implies that, if π̃ establishes a

checkpoint, π̃ does not own any unpublished blocks greater than this checkpoint. We already

know that Qτ = UA(XHalf
τ ) ∩ (0,∞) = UA(XHalf

τ ) since the action PublishPath(Qτ , 0) at

XHalf
τ is opportunistic and establishes a checkpoint. Additionally, since π̃ waits between

XHalf
τ and XHalf

τ ′ , we know that

(TA(Xτ ′) \ TA(Xτ )) = UA(XHalf
τ ′ ) \ UA(XHalf

τ )

So, we have

(Qτ \ {1}) ∪ (TA(Xτ ′) \ TA(Xτ )) =
(
UA(XHalf

τ ) \ {1}
)
∪
(
UA(XHalf

τ ′ ) \ UA(XHalf
τ )

)
= UA(XHalf

τ ′ ) \ {1}

= UA(XHalf
τ ′ ) ∩ (x+ 1,∞)

Here, the last line follows because the attacker does not own any blocks in (1, x+1]. So, the

action is opportunistic and thus it is shown that, if π̃ establishes a checkpoint, π̃ does not

own any unpublished blocks greater than this checkpoint. This completes the proof that π̃

is checkpoint recurrent.

Trivially, π̃ is positive recurrent because the expected value of τ ′ is finite by a coupling

with a random walk, a proof technique we have used several times before.

So, π̃ is shown to be a valid, checkpoint recurrent, positive recurrent strategy. So, let’s
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calculate the value of this strategy from XHalf
τ . From XHalf

τ to XHalf
τ ′ there is a reward from

the honest miner publishing blocks they mine. The value of XHalf
τ ′ is the same as B0, which

is just 0. So, all that remains is the reward from XHalf
τ ′ to Xτ . Let’s show that the action

at XHalf
τ ′ is timeserving, such that all published blocks immediately enter the longest chain.

Let Qτ ′ = (Qτ \ {1}) ∪ (TA(Xτ ′) \ TA(Xτ )) be the set published by π̃ at XHalf
τ ′ . Then, we

have to show that h(maxQτ ′) > h(C(XHalf
τ ′ )):

h(maxQτ ′) = h(x+ 1) + |Qτ ′ |

= h(x+ 1) + | (Qτ \ {1}) ∪ (TA(Xτ ′) \ TA(Xτ )) |

= h(x+ 1) + |Qτ \ {1}|+ |TA(Xτ ′) \ TA(Xτ )|

= h(x+ 1) + |Qτ | − 1 + |TA(Xτ ′) \ TA(Xτ )|

= x+ |Qτ | − 1 + |TA(Xτ ′) \ TA(Xτ )|

> x+ h(C(XHalf
τ ))− 1 + |TA(Xτ ′) \ TA(Xτ )|

= x+ h(C(XHalf
τ ))− 1 + |TH(Xτ ′) \ TH(Xτ )| − (x− 1)

= h(C(XHalf
τ )) + |TH(Xτ ′) \ TH(Xτ )|

= h(C(XHalf
τ ′ ))

Here, the first five lines are simplifications. The sixth line uses the fact that |Qτ | >

h(C(XHalf
τ )) in order for π∗’s action to be timeserving. The seventh line is by the defi-

nition of τ ′. The eighth line is simplification. The ninth line uses the fact that since only the

honest miner publishes between XHalf
τ and XHalf

τ ′ , the length of the longest chain at XHalf
τ ′

is greater than the length of the longest chain at XHalf
τ by exactly the number of honest

blocks mined between XHalf
τ and XHalf

τ ′ . So, since the action is timeserving, it adds |Qτ ′ |

attacker blocks to the longest chain.

To calculate the reward from XHalf
τ ′ to Xτ , it will also help to show that x + 1 ∈
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A(C(XHalf
τ ′ )). But, x + 1 ∈ A(C(XHalf

τ ′ )) as long as x + 1 ∈ A(C(XHalf
τ )) since only the

honest miner publishes between these states, and the honest miner will never fork the longest

chain. So, let’s show that x+1 ∈ A(C(XHalf
τ )). The proof is by contradiction. Suppose that

x + 1 /∈ A(C(XHalf
τ )). Since x + 1 ∈ A(C(B1,x)), this means that some subsequent publish

action forked x+1 from the longest chain. But, an action can only fork x+1 if it publishes

on some block < x + 1. Since π∗ is assumed to be orderly, if it takes some action which

publishes on a block < x + 1, then either it publishes the second smallest block owned by

the attacker, min(TA \ {1}), or this block is already published. In either case, the second

smallest block owned by the attacker must be a checkpoint following this action. To see why,

consider that, between the first and second smallest block owned by the attacker, exactly

one will be in the longest chain (the second smallest attacker block) and one will be hidden

(block 1), so that a weakly greater number of attacker blocks between the first and second

smallest block owned by the attacker are published in the longest chain than hidden, which

is the definition of a checkpoint. But, this is a contradiction since we have shown that no

checkpoints besides the genesis block must exist at XHalf
τ . Therefore, it is shown that no

action could have been taken which forked block x+1 from the longest chain prior to XHalf
τ

and therefore x + 1 ∈ A(C(XHalf
τ )) such that x + 1 ∈ A(C(XHalf

τ ′ )). What this buys us is

the fact that the blocks forked by the action at XHalf
τ ′ is some subset of the blocks forked by

the action at XHalf
τ union the honest miner blocks between XHalf

τ and XHalf
τ ′ . In particular,

for the same ℓA and ℓH as defined before the action at XHalf
τ ′ forks ℓA attacker blocks and

ℓH − x+ |TH(Xτ ′) \ TH(Xτ )| honest miner blocks.

Altogether, we have

rλ∗(XHalf
τ ′ , Xτ ′) = |Qτ ′ |(1− λ∗)− (ℓA(1− λ∗) + (ℓH − x+ |TH(Xτ ′) \ TH(Xτ )|)(−λ∗))

= (|Qτ | − 1 + |TA(Xτ ′) \ TA(Xτ )|)(1− λ∗)

− (ℓA(1− λ∗) + (ℓH − x+ |TH(Xτ ′) \ TH(Xτ )|)(−λ∗))
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Now, we can express the reward of this strategy as the following, by making repeated use

of the linearity of expectation:

V π̃
α,λ∗(XHalf

τ ) = E[rλ∗(Xτ , X
Half
τ ′ ) + rλ∗(XHalf

τ ′ , Xτ ′) + V π̃
α,λ∗(Xτ ′)]

= E[rλ∗(Xτ , X
Half
τ ′ )] + E[rλ∗(XHalf

τ ′ , Xτ ′)]

= −E[|TH(Xτ ′) \ TH(Xτ )|]λ∗ + E[rλ∗(XHalf
τ ′ , Xτ ′)]

= −E[|TH(Xτ ′) \ TH(Xτ )|]λ∗ + E[(|Qτ | − 1 + |TA(Xτ ′) \ TA(Xτ )|)(1− λ∗)

− (ℓA(1− λ∗) + (ℓH − x+ |TH(Xτ ′) \ TH(Xτ )|)(−λ∗))]

= E[(|Qτ | − 1 + |TA(Xτ ′) \ TA(Xτ )|)(1− λ∗)− (ℓA(1− λ∗) + (ℓH − x)(−λ∗))]

= (|Qτ | − 1 + E[|TA(Xτ ′) \ TA(Xτ )|])(1− λ∗)− (ℓA(1− λ∗) + (ℓH − x)(−λ∗))

We can calculate E[|TA(Xτ ′)\TA(Xτ )|] as the following using a coupling with a random walk,

the details of which will be omitted since this has been used in several previous proofs:

E[|TA(Xτ ′) \ TA(Xτ )|] = (x− 1)( α
1−2α

)

Now, we will show that V π̃
α,λ∗(XHalf

τ ) ≥ Vπ∗

α,λ∗(XHalf
τ ):

V π̃
α,λ∗(XHalf

τ )− Vπ∗

α,λ∗(XHalf
τ ) = (|Qτ | − 1 + E[|TA(Xτ ′) \ TA(Xτ )|])(1− λ∗)− (ℓA(1− λ∗) + (ℓH − x)(−λ∗))

− (|Qτ |(1− λ∗)− (ℓA(1− λ∗) + ℓH(−λ∗)))

= (−1 + E[|TA(Xτ ′) \ TA(Xτ )|])(1− λ∗)− xλ∗

= (−1 + (x− 1)( α
1−2α

))(1− λ∗)− xλ∗

> 0

Here, the last inequality follows by the assumption on x, as verified by Mathematica [5].

However, by Lemma B.9 (Bellman’s Principle of Optimality), this is a contradiction since
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we have assumed π∗ to be optimal. Therefore, π∗ will never publish block 1 from state B1,x.

In essence, π∗ may essentially forget block 1 at state B1,x. As a hypothetical, if block 1 did

not exist in the game, then all blocks {2, ..., x + 1} would be checkpoints by definition and

so it would be shown that B1,x optimally capitulates to B0.

However, we can show that B1,x optimally capitulates to B0 even more formally. Suppose

that the optimal strategy π∗ ever forks block x+ 1 from the longest path. That is, suppose

that the optimal strategy π∗ ever publishes a set on some block < x + 1 in the longest

path. Recall that we have already shown that any action which forks block x + 1 from the

longest chain establishes a checkpoint. Therefore, the maximum block in the published set

which forks block x + 1 reaches finality. Now, by the prior discussion, we know that block

1 is definitely not in this published set. So, the published set which forks block x + 1 only

contains blocks > x + 1. But, this is a contradiction, since the strategy π∗ is assumed to

be elevated and the maximum block in the published set reaches finality, yet this published

set could have instead been published on x + 1, which is also in the longest path and is

greater than the block that the published set is actually published on. Therefore, an optimal

strategy π∗ never forks block x+ 1 from the longest path. Then, x+ 1 has reached finality.

In summary, we have shown that an optimal strategy never publishes block 1 and used

this to show that x+1 reaches finality with respect to an optimal strategy. Then, the miner

may optimally capitulate state to height h(x+ 1). But the h(x+ 1)-capitulation is just B0,

and thus the claim is proven.

Proof of Lemma 8.4. In Ferriera and Weinberg [4], it is shown that, for τ the first time an

optimal strategy capitulates to B0,

Vα(B1,1) = Pr[H1(Xτ ) ∈ TA(Xτ ) | X2 = B1,1]

Previously, the upper bound of Pr[H1(Xτ ) ∈ TA(Xτ ) | X2 = B1,1] ≤ α
1−α

is obtained by
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computing the probability that the attacker ever mines one more block than the honest

miner over blocks > 2. We are concerned with the event that the attacker ever mines one

more block than the honest miner over blocks > 2 because the only attacker block which

may be H1(Xτ ) is block 1; this is shown because an optimal strategy is orderly such that

if an action publishes on the genesis block, then this action certainly publishes block 1 and

additionally an optimal strategy is trimmed such that after publishing block 1 on the genesis

block, it will not publish another block on the genesis block. But, the attacker may only

publish block 1 in a timeserving manner if the attacker ever mines one more block than

the honest miner over blocks > 2. Now, by assumption, suppose that an optimal strategy

capitulates from B1,x to B0. In other words, block 1 is never published if the game reaches

B1,x. So, we can now upper bound Pr[H1(Xτ ) ∈ TA(Xτ ) | X2 = B1,1] with the probability

that the attacker ever mines one more block than the honest miner conditioned on the game

never reaching B1,x. The rest of the proof calculates this quantity.

Let Sj be the event that, following X2 = B1,1, the honest miner finds the next j blocks

then the attacker finds the (j + 1)th block. Clearly, Pr(
⋃

j∈{0}∪N Sj) = 1. Then, by the Law

of Total Probability, we can express

Pr[H1(Xτ ) ∈ TA(Xτ ) | X2 = B1,1] =
∞∑
j=0

Pr[H1(Xτ ) ∈ TA(Xτ ) | X2 = B1,1, Sj]Pr[Sj]

Let C be the event that the attacker is ever able to catch up and publish block 1. Formally,

C is the event that the attacker ever mines one more block than the honest miner over blocks

> 2. Even more formally, C is the event that for game (Xt)t≥2 starting at X2 = B1,1 there

is a time t ≥ 3 such that |TA(Xt) \ TA(X2)| = |TH(Xt) \ TH(X2)| + 1. Now, consider the

event C conditioned on Sj. Recall, C is the event that there is a time t ≥ 3 such that

|TA(Xt)\TA(X2)| = |TH(Xt)\TH(X2)|+1. But, we can use Sj to simplify |TA(Xt)\TA(X2)|
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and |TH(Xt) \ TH(X2)|:

|TA(Xt) \ TA(X2)| = |(TA(Xt) \ TA(X3+j)) ∪ (TA(X3+j) \ TA(X2))|

= |TA(Xt) \ TA(X3+j)|+ |TA(X3+j) \ TA(X2)|

= |TA(Xt) \ TA(X3+j)|+ 1

|TH(Xt) \ TH(X2)| = |(TH(Xt) \ TH(X3+j)) ∪ (TH(X3+j) \ TH(X2))|

= |TH(Xt) \ TH(X3+j)|+ |TH(X3+j) \ TH(X2)|

= |TH(Xt) \ TH(X3+j)|+ j

Therefore,

|TA(Xt) \ TA(X2)| = |TH(Xt) \ TH(X2)|+ 1

⇐⇒ |TA(Xt) \ TA(X3+j)|+ 1 = |TH(Xt) \ TH(X3+j)|+ j + 1

⇐⇒ |TA(Xt) \ TA(X3+j)| = |TH(Xt) \ TH(X3+j)|+ j

Also, if event Sj has occurred, we know that the time t ≥ 3 which witnesses |TA(Xt) \

TA(X2)| = |TH(Xt) \ TH(X2)| + 1 is in fact t ≥ 3 + j. Therefore, event C conditioned on

Sj is the event that for game (Xt)t≥3+j starting at X3+j is B1,1 followed by j honest miner

blocks and 1 attacker block, there is a time t ≥ 3 + j such that |TA(Xt) \ TA(X3+j)| =

|TH(Xt) \ TH(X3+j)| + j. But, then the probability Pr[C | Sj] can be solved by a familiar

coupling with random walks. So, by Lemma B.28 this is Pr[C | Sj] = ( α
1−α

)j.

Also, since H1(Xτ ) can be owned by the attacker only if C occurs, we have that

Pr[H1(Xτ ) ∈ TA(Xτ ) | X2 = B1,1, Sj] ≤ Pr[C | Sj]

256



The other term in the equation above, which is Pr[Sj], is easily calculated to be Pr[Sj] =

(1 − α)jα since this is a geometric random variable which counts the number of “failures”

preceding a “success”, where “success” is cast as the attacker mining the next block, which

occurs with probability α.

Indeed, plugging in these values for Pr[C | Sj] and Pr[Sj] and performing the sum recovers

the original probability used to bound Pr[H1(Xτ ) ∈ TA(Xτ )|X2 = B1,1].

Pr[H1(Xτ ) ∈ TA(Xτ ) | X2 = B1,1] =
∞∑
j=0

Pr[H1(Xτ ) ∈ TA(Xτ ) | X2 = B1,1, Sj]Pr[Sj]

≤
∞∑
j=0

Pr[C | Sj]Pr[Sj]

=
∞∑
j=0

(
α

1− α

)j

(1− α)jα

= α
∞∑
j=0

αj

=
α

1− α

Now, note that for all j ≥ x−1, conditioned on the event Sj, the game state Xx+1 is B1,x,

where we have assumed an optimal strategy to capitulate to B0 and thus H1(Xτ ) /∈ TA(Xτ ).

Put otherwise, if Sj occurs for some j ≥ x − 1, then in fact Pr[H1(Xτ ) ∈ TA(Xτ ) | X2 =

B1,1] = 0. Or, using our notation, Pr[H1(Xτ ) ∈ TA(Xτ ) | X2 = B1,1, Sj] = 0 for all j ≥ x−1.

So, we have

Pr[H1(Xτ ) ∈ TA(Xτ ) | X2 = B1,1] =
∞∑
j=0

Pr[H1(Xτ ) ∈ TA(Xτ ) | X2 = B1,1, Sj]Pr[Sj]

=
x−2∑
j=0

Pr[H1(Xτ ) ∈ TA(Xτ ) | X2 = B1,1, Sj]Pr[Sj]

≤
x−2∑
j=0

Pr[C | Sj]Pr[Sj]
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=
x−2∑
j=0

(
α

1− α

)j

(1− α)jα

=
x−2∑
j=0

αj+1

=
x−1∑
j=1

αj

Therefore,

Vα(B1,1) ≤ Pr[H1(Xτ ) ∈ TA(Xτ ) | X2 = B1,1] ≤
x−1∑
j=1

αj

and so the claim is proven.

Proof of Theorem 8.6. By the definition of αPoS, we know that Honest is an optimal strat-

egy for mining strength αPoS, such that the action it takes at B1,0 must be optimal. But,

Honest simply plays PublishPath({1}, 0) atB1,0 then capitulates toB0 such that VαPoS(B1,0) =

1− λ∗.

Yet, by the definition of αPoS, Honest is not the unique optimal strategy for mining

strength αPoS. In particular, there must be another optimal strategy which instead plays

Wait at B1,0 and in doing so achieves value

1− λ∗ = VαPoS(B1,0) = αPoSVαPoS(B2,0) + (1− αPoS)(VαPoS(B1,1)− λ∗)

However, by Corollary B.33, we know that

VαPoS(B2,0) =
(
2 + ( α

1−2α
)
)
(1− λ∗)
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So, we can plug this in to find

1− λ∗ = αPoS
(
2 + ( α

1−2α
)
)
(1− λ∗) + (1− αPoS)(VαPoS(B1,1)− λ∗)

Then, we can plug in λ∗ = maxπ Rev(π, αPoS) = αPoS and rearrange for VαPoS(B1,1) to get

VαPoS(B1,1) =
1− 3αPoS + (αPoS)2

2αPoS − 1

Finally, plugging in the bound due to Corollary 8.5 gives us

VαPoS(B1,1) =
1− 3αPoS + (αPoS)2

1− 2αPoS
≤

5∑
i=1

(αPoS)i

which we can easily solve to find αPoS ≥ 0.308186.

H.2 Omitted Proofs from Section 8.2

Proof of Theorem 8.7. The proof presented here will be similar to the proof of Theorem

8.1. Let π∗ be an optimal structured strategy and let λ∗ = Rev(π∗, α). Also, let B′ ∈

B(−x)∆ such that B is any state with h(C(B))-capitulation B1,0, TA(B
′) \ TA(B) = ∅, and

x ≥ |TA(B)| − 2. Additionally, let α be the attacker’s probability of mining the next block.

Finally,

∀b ∈ {b′ ∈ TA(B) | (b′ − 1 /∈ TA(B)) ∧ (b′ − 2 /∈ TA(B))}

and S = TA(B) ∩ [b,∞), let the following inequality hold:

(
− |S|+

(
x+ h(C(B))− |S| − h(b− 1)

)
( α
1−2α

)

)
(1− λ∗)−

(
x+ h(C(B))− h(b− 1)

)
λ∗ > 0

259



First, we will show that if π∗ ever publishes a block in TA(B), then π∗ subsequently

capitulates to B0. At a high-level, this property follows from the assumption that x ≥

|TA(B)| − 2, since this will allow us to claim that, when publishing any block in TA(B),

sufficiently many attacker blocks are guaranteed to be published to establish a checkpoint.

Then, since a checkpoint is established, by the fact that π∗ is opportunistic, the strategy

subsequently capitulates to B0.

Now, let’s show this formally. For game (Xt)t≥0 with X0 = B′, suppose that for some

τ ≥ 1, strategy π∗ takes action PublishPath(Qτ , vτ ) at state XHalf
τ which publishes some

block in TA(B). In other words, Qτ ∩ TA(B) ̸= ∅. Furthermore, let τ be the first time step

such that this is true.

First, with this action, at Xτ , the attacker owns all blocks in the longest chain at heights

{h(vτ ) + 1, ..., h(Xτ )}. Additionally, since π∗ is orderly and we have assumed that τ is the

first time π∗ publishes any block from TA(B), we know that at Xτ , any blocks in the longest

path at heights {1, ..., h(vτ )} must be owned by the honest miner.

Next, note that blocks in TA(B) may only be published on blocks in

V (XHalf
τ ) ∩ (TA(B) ∪ TH(B)) = V (XHalf

τ ) ∩ TH(B) = TH(B) = V (B)

where the first equality follows by definition of τ and the second and third equalities follows

by definition of the honest strategy. Then, we know that vτ ∈ V (B) such that h(vτ ) ≤

h(C(B)). On the other hand, since the height of the longest chain only increases, we know

h(C(XHalf
τ )) ≥ h(C(B′)) = h(C(B))+x, where the last inequality comes from the fact that x

honest miner blocks are published to the longest chain between B and B′. Finally, since π∗

is patient, we know that the action PublishPath(Qτ , vτ ) increases the height of the longest

chain by exactly one, or h(C(Xτ )) = h(C(XHalf
τ ))+1 = h(vτ )+ |Qτ |. So, we can lower bound
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|Qτ | the size of the published set:

|Qτ | = h(C(XHalf
τ )) + 1− h(vτ )

≥ h(C(B′)) + 1− h(C(B))

= h(C(B)) + x+ 1− h(C(B))

= x+ 1

≥ |TA(B)| − 1

Here, the last line is by the assumption that x ≥ |TA(B)| − 2.

Finally, we know that at XHalf
τ the most recently established checkpoint vC must be

some block vC ≤ vτ since only blocks in this range remain in the longest path from XHalf
τ to

Xτ and π∗ is assumed to be checkpoint recurrent such that no block which is in the longest

path at XHalf
τ but not Xτ may be a checkpoint. We now have enough of an understanding

about the state Xτ to show that PublishPath(Qτ , vτ ) establishes a checkpoint. Formally, we

will show that maxQτ is a potential checkpoint, and by definition, a checkpoint exists if a

potential checkpoint exists. Let b′ ∈ Qτ ∩ TA(B), be the block in the published set which is

also in TA(B). Clearly, b′ is bound to exist by the definition of τ :

|A(C(Xτ )) ∩ (vC ,maxQτ ] ∩ TA(Xτ )| = |Qτ ∩ (vC ,maxQτ ] ∩ TA(Xτ )|

= |Qτ |

≥ x+ 1

≥ |TA(B)| − 1

≥ |UA(B) ∩ (0, b′)|

≥ |UA(Xτ ) ∩ (0, b′)|

= |UA(Xτ ) ∩ (0,maxQτ ]|
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≥ |UA(Xτ ) ∩ (vC ,maxQτ ]|

Here, the second line follows because we must have Qτ ⊆ TA(Xτ ) and all blocks in Qτ must

be greater than vτ > vC for this to be a valid publish action. The third line uses our bound

on |Qτ | derived above. The fourth line uses the fact that x ≥ |TA(B)| − 2 by assumption.

The fifth line is because b′ ∈ UA(B) by definition of b′ and so the size of UA(B) ∩ (0, b′),

which does not include b′, must be

|UA(B) ∩ (0, b′)| ≤ |UA(B)| − 1 = |TA(B)| − 1

The sixth line observes that UA(Xτ ) ∩ (0, b′) = UA(B) ∩ (0, b′), since the attacker can never

mine and hide new blocks in the range (0, b′). The seventh line observes that because the

strategy is orderly and b′,maxQτ ∈ Qτ it may not own an unpublished block in [b′,maxQτ ]

at Xτ , or |UA(Xτ ) ∩ [b′,maxQτ ]| = 0 such that

|UA(Xτ ) ∩ (0,maxQτ ]| = |UA(Xτ ) ∩ (0, b′)|+ |UA(Xτ ) ∩ [b′,maxQτ ]| = |UA(Xτ ) ∩ (0, b′)|

The final line is by the simple fact that vC ≥ 0 and shortening the interval over which

we take the intersection with UA(Xτ ) cannot increase the number of blocks in the result-

ing set. Therefore, it is shown that maxQτ is a potential checkpoint and so the action

PublishPath(Qτ , vτ ) establishes a checkpoint. Then, since the action is opportunistic, it

must include all unpublished blocks past this checkpoint and therefore capitulate to B0 at

Xτ .

So far, we have shown that if π∗ ever publishes a block in TA(B) then π∗ subsequently

capitulates to B0. Let (Xt)t≥0, Qτ , and vτ be defined the same as before. Now, denote the
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set

D = {b ∈ TA(B) | (b′ − 1 /∈ TA(B)) ∧ (b− 2 /∈ TA(B))}

The next thing we will show is that minQτ ∈ D. The proof is by contradiction. Suppose not.

That is, suppose minQτ /∈ D. But clearly since minQτ includes some block from TA(B) and

all blocks in TA(B) are less than any block mined after B, we know that minQτ ∈ TA(B).

Therefore, minQτ − 1 ∈ TA(B) or minQτ − 2 ∈ TA(B). The contradiction is easier to derive

in the case that minQτ − 1 ∈ TA(B). Recall Lemma 5.11; since we know that maxQτ would

reach finality with publish action PublishPath(Qτ , vτ ) and vτ ∈ TH(B) as shown earlier, it

follows that minQτ = vτ + 1 which implies that minQτ − 1 = vτ ∈ TH(B). But, this is a

contradiction because we have assumed that minQτ − 1 ∈ TA(B).

For the case that minQτ−2 ∈ TA(B), we will derive the contradiction by showing that we

can expand the published set Qτ to additionally include block minQτ − 2; this would place

an additional attacker block in the longest chain while still not forking a checkpoint and so

implies that the original action PublishPath(Qτ , vτ ) was not thrifty, which is a contradiction

since we have assumed π∗ to be thrifty. If h(vτ ) = 0, then we can simply add block minQτ−2,

to the published set without worrying about forking a checkpoint since this doesn’t fork any

more blocks than the original action does. Then, the state that results from publishing this

augmented set has strictly more attacker blocks in the longest path than otherwise would have

been. If h(vτ ) > 0, then instead of taking action PublishPath(Qτ , vτ ), we could take action

PublishPath(Qτ ∪ {minQτ − 2}, Hh(vτ )−1(X
Half
τ )). That is, we could add block minQτ − 2

and publish on the node in the longest path at one less height than the node we would

have otherwise published on. By virtue of vτ pointing to Hh(vτ )−1(X
Half
τ ), we know that

Hh(vτ )−1(X
Half
τ ) ∈ TH(B) since these are the only blocks published at the time vτ ∈ TH(B)

was published and also Hh(vτ )−1(X
Half
τ ) < vτ . But, recall Lemma 5.11; since we know that
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maxQτ would reach finality with publish action PublishPath(Qτ , vτ ) and vτ ∈ TH(B) as

shown earlier, it follows that minQτ = vτ + 1. Then, minQτ − 2 = vτ + 1 − 2 = vτ − 1.

Therefore, since Hh(vτ )−1(X
Half
τ ) ∈ TH(B) cannot equal vτ − 1 ∈ TA(B) we in fact have that

Hh(vτ )−1(X
Half
τ ) < vτ − 1 = minQτ − 2 < vτ

Therefore, action PublishPath(Qτ ∪ {minQτ − 2}, Hh(vτ )−1(X
Half
τ )) is certainly valid. We

also want to show that this action does not fork a checkpoint. But, since the only additional

block it forks compared to PublishPath(Qτ , vτ ) is vτ , we just have to show that vτ is not

a checkpoint. But since all attacker blocks less than vτ are unpublished at XHalf
τ by the

definition of τ and there is at least one such unpublished attacker block less than vτ , which

is minQτ − 2 = vτ − 1, we know that vτ may not be a checkpoint. So, PublishPath(Qτ ∪

{minQτ − 2}, Hh(vτ )−1(X
Half
τ )) is a valid, checkpoint recurrent action that, with respect

to action PublishPath(Qτ , vτ ) kicks out one more honest miner block, block vτ , from the

longest chain to place one more attacker block, block minQτ − 2, in the longest chain. But,

since we have shown that PublishPath(Qτ , vτ ) is such that maxQτ would reach finality, this

alternative action witnesses the fact that PublishPath(Qτ , vτ ) is not a thrifty action. This is

a contradiction since we have assumed strategy π∗ to be thrifty. This completes the proof

that minQτ ∈ D.

Now, we will show that in fact strategy π∗ will never publish any block in TA(B). The

proof is by contradiction and is very similar to the proof of Theorem 8.1. Let (Xt)t≥0, Qτ ,

vτ , and D be as defined earlier, where now, for the sake of contradiction, we are assuming

that such a time τ exists.

Additionally define S as the set of all attacker blocks in TA(B) which are greater than

minQτ , or S = TA(B)∩ [minQτ ,∞). We will quickly show that S ⊆ Qτ . In other words, we

will show that Qτ contains all blocks in TA(B) which are greater than or equal to minQτ .
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Note that at XHalf
τ , by the fact that the h(C(B))-capitulation of B is B1,0 and the honest

miner has mined x ≥ 1 blocks since then, Qτ must contain at least one block not in TA(B).

But, because π∗ is orderly, it publishes the |Qτ | smallest blocks greater than vτ and no

blocks in TA(B) are published prior to XHalf
τ by the definition of τ . So, the fact that there

is some block in Qτ not in TA(B) implies that there are fewer than |Qτ | blocks greater

than vτ in TA(B). Therefore, all blocks greater than vτ in TA(B) must be part of Qτ , or

TA(B) ∩ (vτ ,∞) ⊂ Qτ . But since we must have that minQτ = vτ + 1, this exactly means

that TA(B) ∩ [minQτ ,∞) = S ⊂ Qτ .

Since we have already shown that π∗ necessarily capitulates from Xτ to B0 such that

Vπ∗

α,λ∗(Xτ ) = 0, we can easily calculate the value of state XHalf
τ :

Vπ∗

α,λ∗(XHalf
τ ) = rλ∗(XHalf

τ , Xτ ) + Vπ∗

α,λ∗(Xτ ) = rλ∗(XHalf
τ , Xτ )

To express rλ∗(XHalf
τ , Xτ ), we will partition the blocks which are forked from the longest

chain by their height, for reasons that will become clearer later:

rλ∗(XHalf
τ , Xτ ) = h(C(B))∑

i=h(vτ )+1

1Hi(Xτ )∈TA(Xτ ) − 1Hi(XHalf
τ )∈TA(XHalf

τ )

 (1− λ∗)

−

 h(C(B))∑
i=h(vτ )+1

1Hi(Xτ )∈TH(Xτ ) − 1Hi(XHalf
τ )∈TH(XHalf

τ )

λ∗

+

 h(C(XHalf
τ ))∑

i=h(C(B))+1

1Hi(Xτ )∈TA(Xτ ) − 1Hi(XHalf
τ )∈TA(XHalf

τ )

 (1− λ∗)

−

 h(C(XHalf
τ ))∑

i=h(C(B))+1

1Hi(Xτ )∈TH(Xτ ) − 1Hi(XHalf
τ )∈TH(XHalf

τ )

λ∗
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+

 h(C(Xτ ))∑
i=h(C(XHalf

τ ))+1

1Hi(Xτ )∈TA(Xτ ) − 1Hi(XHalf
τ )∈TA(XHalf

τ )

 (1− λ∗)

−

 h(C(Xτ ))∑
i=h(C(XHalf

τ ))+1

1Hi(Xτ )∈TH(Xτ ) − 1Hi(XHalf
τ )∈TH(XHalf

τ )

λ∗

=

 h(C(B))∑
i=h(vτ )+1

1

 (1− λ∗)−

 h(C(B))∑
i=h(vτ )+1

−1

λ∗

+

 h(C(XHalf
τ ))∑

i=h(C(B))+1

1− 1Hi(XHalf
τ )∈TA(XHalf

τ )

 (1− λ∗)−

 h(C(XHalf
τ ))∑

i=h(C(B))+1

−1Hi(XHalf
τ )∈TH(XHalf

τ )

λ∗

+

 h(C(Xτ ))∑
i=h(C(XHalf

τ ))+1

1

 (1− λ∗)−

 h(C(Xτ ))∑
i=h(C(XHalf

τ ))+1

0

λ∗

= h(C(B))− h(vτ ) +

 h(C(XHalf
τ ))∑

i=h(C(B))+1

1− 1Hi(XHalf
τ )∈TA(XHalf

τ )

+ (h(C(Xτ ))− h(C(XHalf
τ )))(1− λ∗)

= h(C(B))− h(vτ ) +

 h(C(XHalf
τ ))∑

i=h(C(B))+1

1− 1Hi(XHalf
τ )∈TA(XHalf

τ )

+ (1− λ∗)

More simply, any attacker block which reaches a height in (h(vτ ), h(C(B))] at Xτ surely

kicks out an honest miner block by definition of τ being the first time a block in TA(B) is

published and these heights are only owned by the attacker if such a block is published. Any

attacker block which reaches a height in (h(C(B)), h(C(XHalf
τ ))] may kick out an attacker

block or an honest miner block, so we are not able to evaluate this directly. Finally, since

the strategy is patient, there is exactly one block which reaches height > h(C(XHalf
τ )) and

this block does not kick out any block.

Now, consider an alternate strategy π̃ at XHalf
τ which instead waits until the first time
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τ ′ ≥ τ such that

|TA(Xτ ′) \ TA(Xτ )|+ (h(C(B′))− |S| − h(vτ )) = |TH(Xτ ′) \ TH(Xτ )|

then for

Qτ ′ = (Qτ \ S) ∪ (TA(Xτ ′) \ TA(Xτ ))

takes action PublishPath(Qτ ′ , h(C(B′))) at state XHalf
τ ′ and capitulates to B0. That is, τ ′

is the first time after τ such that the honest miner has mined h(C(B′)) − |S| − h(vτ ) more

blocks than the attacker between Xτ and Xτ ′ . So, π̃ essentially selfish mines on the blocks in

excess of those needed to publish on h(C(B′)) at Xτ . Let’s show that π̃ is valid, checkpoint

recurrent, and positive recurrent.

Clearly, all blocks in Qτ ′ are unpublished blocks owned by the attacker at Xτ ′ . That

is, blocks Qτ \ S are unpublished at XHalf
τ ′ by virtue of π∗ trying to publish these blocks

at XHalf
τ and π̃ playing Wait until τ ′. Also, blocks (TA(Xτ ′) \ TA(Xτ )) are unpublished at

XHalf
τ ′ because π̃ plays Wait from XHalf

τ (inclusive) to XHalf
τ ′ (exclusive). Also, we know

that all blocks in this set are greater than h(C(B)) because the only blocks owned by the

attacker which are not greater than h(C(B)) are those in TA(B), which are not included by

definition. So, the action is valid.

Next, we have already shown that there are no checkpoints at XHalf
τ at heights > h(vτ ).

Between XHalf
τ and XHalf

τ ′ , only honest miner blocks will be published. But, an honest

miner block only becomes a checkpoint if it is published on a checkpoint and so these honest

miner blocks published between XHalf
τ and XHalf

τ ′ cannot be checkpoints. In other words,

no further checkpoints are established between XHalf
τ and XHalf

τ ′ and so π̃’s action cannot

fork a checkpoint.

Next, we will show that the action is opportunistic, which implies that, if π̃ establishes
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a checkpoint, π̃ does not own any unpublished blocks greater than this checkpoint. We

already know that Qτ = UA(XHalf
τ )∩ (vτ ,∞) since the action PublishPath(Qτ , 0) at X

Half
τ is

opportunistic and establishes a checkpoint. Additionally, since π̃ waits between XHalf
τ and

XHalf
τ ′ , we know that

(TA(Xτ ′) \ TA(Xτ )) = UA(XHalf
τ ′ ) \ UA(XHalf

τ )

So, we have

(Qτ \ S) ∪ (TA(Xτ ′) \ TA(Xτ )) =
((
UA(XHalf

τ ) ∩ (vτ ,∞)
)
\ (TA(B) ∩ [minQτ ,∞))

)
∪
(
UA(XHalf

τ ′ ) \ UA(XHalf
τ )

)
=
(
UA(XHalf

τ ) \ UA(B′)
)
∪
(
UA(XHalf

τ ′ ) \ UA(XHalf
τ )

)
= UA(XHalf

τ ′ ) \ UA(B′)

= UA(XHalf
τ ′ ) ∩ (h(C(B)),∞)

So, the action is opportunistic and thus it is shown that, if π̃ establishes a checkpoint, π̃

does not own any unpublished blocks greater than this checkpoint. This completes the proof

that π̃ is checkpoint recurrent.

To show π̃ is positive recurrent, let’s first show that h(C(B′))− |S| − h(vτ ) ≥ 0. As long

as this is the case, we will claim that the expected value of τ ′ is finite by a coupling with a

random walk, a proof technique we have used several times before:

h(C(B′))− |S| − h(vτ ) = h(C(B)) + x− |S| − h(vτ )

= h(C(B)) + x− (|S| − h(vτ ))

≥ h(C(B)) + x− (h(C(B)) + 1)

= x− 1
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≥ 1− 1

= 0

Here, we are using the fact that the h(C(B))-capitulation of B is B1,0 implies that |S| +

h(vτ ) ≤ h(C(B)) + 1, else more than one block would be able to reach height > h(C(B)).

Then, the second-to-last line uses the fact that x ≥ min{1, |TA(B)| − 2} implies that x ≥ 1.

So, it is shown that h(C(B′))− |S| − h(vτ ) ≥ 0 and so this strategy is positive recurrent by

a familiar coupling with random walks.

So, π̃ is shown to be a valid, checkpoint recurrent, positive recurrent strategy. So, let’s

calculate the value of this strategy from XHalf
τ . From XHalf

τ to XHalf
τ ′ there is a reward from

the honest miner publishing blocks they mine. The value of XHalf
τ ′ is the same as B0, which

is just 0. So, all that remains is the reward from XHalf
τ ′ to Xτ . Let’s show that the action

at XHalf
τ ′ is timeserving, such that all published blocks immediately enter the longest chain.

That is, let’s show that h(maxQτ ′) > h(C(XHalf
τ ′ )):

h(maxQτ ′) = h(C(B′)) + |Qτ ′|

= h(C(B′)) + | (Qτ \ S) ∪ (TA(Xτ ′) \ TA(Xτ )) |

= h(C(B′)) + | (Qτ \ S) |+ | (TA(Xτ ′) \ TA(Xτ )) |

= h(C(B′)) + |Qτ | − |S|+ | (TA(Xτ ′) \ TA(Xτ )) |

= h(C(B′)) + h(C(XHalf
τ )) + 1− h(vτ )− |S|+ | (TA(Xτ ′) \ TA(Xτ )) |

= h(C(B′)) + h(C(XHalf
τ )) + 1− h(vτ )− |S|+ | (TH(Xτ ′) \ TH(Xτ )) |

− (h(C(B′))− |S| − h(vτ ))

= h(C(XHalf
τ )) + 1 + | (TH(Xτ ′) \ TH(Xτ )) |

= h(C(XHalf
τ ′ ))|
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Here, the first four lines are simplifications. The fifth line uses the fact that h(vτ ) + |Q| =

h(C(XHalf
τ ))+1 since π∗ is patient. The sixth line uses the definition of τ ′. The seventh line

is simplification. The eighth line uses the fact that since only the honest miner publishes

between XHalf
τ and XHalf

τ ′ , the length of the longest chain at XHalf
τ ′ is greater than the length

of the longest chain at XHalf
τ by exactly the number of honest blocks mined between XHalf

τ

and XHalf
τ ′ . So, the action is shown to be timeserving.

Now that we have shown that the action is timeserving, similar to before, to express the

reward rλ∗(XHalf
τ ′ , Xτ ′), we will partition the blocks which are forked from the longest chain

by their height. Note that h(C(B′)) is not guaranteed to be in the longest chain anymore but

all blocks in V (B) are by the assumption that τ is the first time that the attacker publishes

a block from TA(B):

rλ∗(XHalf
τ ′ , Xτ ′) = h(C(B′))∑

i=h(C(B))+1

1Hi(Xτ ′ )∈TA(Xτ ′ )
− 1Hi(XHalf

τ ′ )∈TA(XHalf
τ ′ )

 (1− λ∗)

−

 h(C(B′))∑
i=h(C(B))+1

1Hi(Xτ ′ )∈TH(Xτ ′ )
− 1Hi(XHalf

τ ′ )∈TH(XHalf
τ ′ )

λ∗

+

 h(C(XHalf
τ ))∑

i=h(C(B′))+1

1Hi(Xτ ′ )∈TA(Xτ ′ )
− 1Hi(XHalf

τ ′ )∈TA(XHalf
τ ′ )

 (1− λ∗)

−

 h(C(XHalf
τ ))∑

i=h(C(B′))+1

1Hi(Xτ ′ )∈TH(Xτ ′ )
− 1Hi(XHalf

τ ′ )∈TH(XHalf
τ ′ )

λ∗

+

 h(C(XHalf
τ ′ ))∑

i=h(C(XHalf
τ ))+1

1Hi(Xτ ′ )∈TA(Xτ ′ )
− 1Hi(XHalf

τ ′ )∈TA(XHalf
τ ′ )

 (1− λ∗)

−

 h(C(XHalf
τ ′ ))∑

i=h(C(XHalf
τ ))+1

1Hi(Xτ ′ )∈TH(Xτ ′ )
− 1Hi(XHalf

τ ′ )∈TH(XHalf
τ ′ )

λ∗
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+

 h(C(Xτ ′ ))∑
i=h(C(XHalf

τ ′ ))+1

1Hi(Xτ ′ )∈TA(Xτ ′ )
− 1Hi(XHalf

τ ′ )∈TA(XHalf
τ ′ )

 (1− λ∗)

−

 h(C(Xτ ′ ))∑
i=h(C(XHalf

τ ′ ))+1

1Hi(Xτ ′ )∈TH(Xτ ′ )
− 1Hi(XHalf

τ ′ )∈TH(XHalf
τ ′ )

λ∗

=

 h(C(B′))∑
i=h(C(B))+1

−1Hi(XHalf
τ ′ )∈TA(XHalf

τ ′ )

 (1− λ∗)−

 h(C(B′))∑
i=h(C(B))+1

1− 1Hi(XHalf
τ ′ )∈TH(XHalf

τ ′ )

λ∗

+

 h(C(XHalf
τ ))∑

i=h(C(B′))+1

1− 1Hi(XHalf
τ ′ )∈TA(XHalf

τ ′ )

 (1− λ∗)−

 h(C(XHalf
τ ))∑

i=h(C(B′))+1

−1Hi(XHalf
τ ′ )∈TH(XHalf

τ ′ )

λ∗

+

 h(C(XHalf
τ ′ ))∑

i=h(C(XHalf
τ ))+1

1

 (1− λ∗)−

 h(C(XHalf
τ ′ ))∑

i=h(C(XHalf
τ ))+1

−1

λ∗

+

 h(C(Xτ ′ ))∑
i=h(C(XHalf

τ ′ ))+1

1

 (1− λ∗)−

 h(C(Xτ ′ ))∑
i=h(C(XHalf

τ ′ ))+1

0

λ∗

= −

 h(C(B′))∑
i=h(C(B))+1

1− 1Hi(XHalf
τ ′ )∈TH(XHalf

τ ′ )

+

 h(C(XHalf
τ ))∑

i=h(C(B′))+1

1− 1Hi(XHalf
τ ′ )∈TA(XHalf

τ ′ )


+ (h(C(XHalf

τ ′ ))− h(C(XHalf
τ ))) + (h(C(Xτ ′))− h(C(XHalf

τ ′ )))(1− λ∗)

= −

 h(C(B′))∑
i=h(C(B))+1

1− 1Hi(XHalf
τ ′ )∈TH(XHalf

τ ′ )

+

 h(C(XHalf
τ ))∑

i=h(C(B′))+1

1− 1Hi(XHalf
τ ′ )∈TA(XHalf

τ ′ )


+ |TH(Xτ ′) \ TH(Xτ )|+ (1− λ∗)

More simply, since we know the path from C(B′) to C(B) contains only honest miner blocks,

publishing such that C(B′) is reinserted into the longest chain may kick out attacker blocks,

though we are not able to evaluate this directly. Similarly, any attacker block which reaches
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a height in (h(C(B′)), h(C(XHalf
τ ))] may kick out an attacker block or an honest miner

block, so we are not able to evaluate this directly. Since only the honest miner publishes

between XHalf
τ and XHalf

τ ′ , we know that any attacker block which reaches a height in

(h(C(XHalf
τ )), h(C(XHalf

τ ′ ))] will surely kick out an honest miner block. Finally, we have

shown there to be exactly one block that reaches height > h(C(XHalf
τ ′ )) and this block does

not kick out any block.

Now, we can express the reward of this strategy as the following, by making repeated use

of the linearity of expectation:

V π̃
α,λ∗(XHalf

τ ) = E[rλ∗(Xτ , X
Half
τ ′ ) + rλ∗(XHalf

τ ′ , Xτ ′) + V π̃
α,λ∗(Xτ ′)]

= E[rλ∗(Xτ , X
Half
τ ′ )] + E[rλ∗(XHalf

τ ′ , Xτ ′)]

= −E[|TH(Xτ ′) \ TH(Xτ )|]λ∗ + E[rλ∗(XHalf
τ ′ , Xτ ′)]

= −E[|TH(Xτ ′) \ TH(Xτ )|]λ∗ −

 h(C(B′))∑
i=h(C(B))+1

1− 1Hi(XHalf
τ ′ )∈TH(XHalf

τ ′ )


+

 h(C(XHalf
τ )∑

i=h(C(B′))+1

1− 1Hi(XHalf
τ ′ )∈TA(XHalf

τ ′ )

+ E[|TH(Xτ ′) \ TH(Xτ )|] + (1− λ∗)

= (E[|TH(Xτ ′) \ TH(Xτ )|] + 1)(1− λ∗)−

 h(C(B′))∑
i=h(C(B))+1

1− 1Hi(XHalf
τ ′ )∈TH(XHalf

τ ′ )


+

 h(C(XHalf
τ )∑

i=h(C(B′))+1

1− 1Hi(XHalf
τ ′ )∈TA(XHalf

τ ′ )


= (E[|TA(Xτ ′) \ TA(Xτ )|] + h(C(B′))− |S| − h(vτ ) + 1)(1− λ∗)

−

 h(C(B′))∑
i=h(C(B))+1

1− 1Hi(XHalf
τ ′ )∈TH(XHalf

τ ′ )

+

 h(C(XHalf
τ )∑

i=h(C(B′))+1

1− 1Hi(XHalf
τ ′ )∈TA(XHalf

τ ′ )


We can calculate E[|TA(Xτ ′)\TA(Xτ )|] as the following using a coupling with a random walk,
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the details of which will be omitted since this has been used in several previous proofs:

E[|TA(Xτ ′) \ TA(Xτ )|] = (h(C(B′))− |S| − h(vτ )) (
α

1−2α
)

As one final intermediate result to showing V π̃
α,λ∗(XHalf

τ ) ≥ Vπ∗

α,λ∗(XHalf
τ ), consider the

following:

−

 h(C(B′))∑
i=h(C(B))+1

1− 1Hi(XHalf
τ ′ )∈TH(XHalf

τ ′ )

+

 h(C(XHalf
τ ))∑

i=h(C(B′))+1

1− 1Hi(XHalf
τ ′ )∈TA(XHalf

τ ′ )


−

 h(C(XHalf
τ ))∑

i=h(C(B))+1

1− 1Hi(XHalf
τ )∈TA(XHalf

τ )


=−

 h(C(B′))∑
i=h(C(B))+1

1− 1Hi(XHalf
τ ′ )∈TH(XHalf

τ ′ )

+

 h(C(XHalf
τ ))∑

i=h(C(B′))+1

1− 1Hi(XHalf
τ ′ )∈TA(XHalf

τ ′ )


−

 h(C(B′))∑
i=h(C(B))+1

1− 1Hi(XHalf
τ )∈TA(XHalf

τ )

−
 h(C(XHalf

τ ))∑
i=h(C(B′))+1

1− 1Hi(XHalf
τ )∈TA(XHalf

τ )


=−

 h(C(B′))∑
i=h(C(B))+1

1− 1Hi(XHalf
τ ′ )∈TH(XHalf

τ ′ )

−
 h(C(B′))∑

i=h(C(B))+1

1− 1Hi(XHalf
τ )∈TA(XHalf

τ )


=

h(C(B′))∑
i=h(C(B))+1

1Hi(XHalf
τ ′ )∈TH(XHalf

τ ′ ) + 1Hi(XHalf
τ )∈TA(XHalf

τ ) − 2

=

h(C(B′))∑
i=h(C(B))+1

1− 2

=

h(C(B′))∑
i=h(C(B))+1

−1

=− (h(C(B′))− h(C(B)))

Here, we have used the fact that for all i ∈ {h(C(B)) + 1, h(C(B′))}, we have Hi(X
Half
τ ) =
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Hi(X
Half
τ ′ )) since only the honest miner publishes between XHalf

τ and XHalf
τ ′ such that the

longest chain will not be forked during this time and any blocks in the longest path at XHalf
τ

are in the longest path at XHalf
τ ′ . We have also used the fact that 1Hi(XHalf

τ ′ )∈TH(XHalf
τ ′ ) +

1Hi(XHalf
τ )∈TA(XHalf

τ ) = 1 since exactly one of them must be true. Now, for V π̃
α,λ∗(XHalf

τ ) >

Vπ∗

α,λ∗(XHalf
τ ):

V π̃
α,λ∗(XHalf

τ )− Vπ∗

α,λ∗(XHalf
τ )

= (h(C(B′))− |S| − h(vτ ) + 1 + (h(C(B′))− |S| − h(vτ )) (
α

1−2α
))(1− λ∗)

−

 h(C(B′))∑
i=h(C(B))+1

1− 1Hi(XHalf
τ ′ )∈TH(XHalf

τ ′ )

+

 h(C(XHalf
τ )∑

i=h(C(B′))+1

1− 1Hi(XHalf
τ ′ )∈TA(XHalf

τ ′ )


−

h(C(B))− h(vτ ) +

 h(C(B′))∑
i=h(C(B))+1

1− 1Hi(XHalf
τ )∈TA(XHalf

τ )


= (h(C(B′))− |S| − h(vτ ) + (h(C(B′))− |S| − h(vτ )) (

α
1−2α

))(1− λ∗)

− (h(C(B))− h(vτ ) + (h(C(B′))− h(C(B))))

= (h(C(B′))− |S| − h(vτ ) + (h(C(B′))− |S| − h(vτ )) (
α

1−2α
))(1− λ∗)

− (h(C(B′))− h(vτ ))

= (−|S|+ (h(C(B′))− |S| − h(vτ )) (
α

1−2α
))(1− λ∗)− (h(C(B′))− h(vτ ))λ

∗

= (−|S|+ (x+ h(C(B))− |S| − h(minQτ − 1)) ( α
1−2α

))(1− λ∗)− (x+ h(C(B))− h(minQτ − 1))λ∗

> 0

The first line is just rewrites these quantities. The second line uses the intermediate result

we just derived to simplify the sums. The third and fourth line is simplification. The fifth

line rewrites h(C(B′)) = h(C(B)) + x and vτ = minQτ − 1 so that it looks more similar to

that given in the theorem statement. Since we have already shown that minQτ ∈ D, the last

line is by the assumed inequalities, simply substituting b for minQτ . However, by Lemma
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B.9 (Bellman’s Principle of Optimality), this is a contradiction since we have assumed π∗ to

be optimal. Therefore, π∗ will never publish any block in TA(B) 1 from state B′. In essence,

π∗ may essentially forget blocks TA(B) 1 at state B′. But, if blocks TA(B) are deleted from

the game at B′, then the resulting state only honest miner blocks such that these must be

checkpoints. Then, since wen optimal strategy capitulates to the height of the most recent

checkpoint, an optimal strategy capitulates to B0 and the proof is complete. Another way of

seeing this final result is that if a strategy never publishes blocks TA(B) from state B′, then

the best it can do is copy an optimal strategy at the state B0,|TH(B′)|, that is, a state which

only has |TH(B
′)| honest miner blocks. But, the optimal strategy at such a state capitulates

to B0, which again completes the proof.

Proof of Theorem 8.8. Let B′ ∈ B(−x)∆ such that B is any state with h(C(B))-capitulation

B1,0, TA(B
′) \ TA(B) = ∅, and x ≥ |TA(B)| − 2. Additionally, let α be the attacker’s

probability of mining the next block. Finally, let

x >
|TA(B)| − α|TA(B)| − λ∗|TA(B)|+ αλ∗|TA(B)|

α− λ∗ + αλ∗

We will show that this bound on x implies that

∀b ∈ {b′ ∈ TA(B) | (b′ − 1 /∈ TA(B)) ∧ (b′ − 2 /∈ TA(B))}

and S = TA(B) ∩ [b,∞), the following inequality holds:

(
− |S|+

(
x+ h(C(B))− |S| − h(b− 1)

)
( α
1−2α

)

)
(1− λ∗)−

(
x+ h(C(B))− h(b− 1)

)
λ∗ > 0

In turn, this implies that it is optimal to capitulate from B′ to B0 by Theorem 8.7. To

show this, we will first have to lower bound the left hand side of this inequality, which we

will denote f . All of α, λ∗, h(C(B)), h(C(B′)), and x are fixed. However, |S| and h(b − 1)
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depend on the choice of b, so we can bound these quantities. To determine if we need a lower

bound or an upper bound, we will first have to take partial derivatives with respect to these

quantities:

∂f

∂|S|
= (−1− ( α

1−2α
))(1− λ∗) < 0

∂f

∂h(b− 1)
= −( α

1−2α
)(1− λ∗) + λ∗ < 0

The negativity of the partial derivative with respect to |S| is due to the fact that α
1−2α

and 1 − λ∗ are positive such that this partial derivative is a negative quantity times a

positive quantity. The negativity of the partial derivative with respect to h(b− 1) is slightly

trickier but is confirmed via Mathematica [4] using the known bounds of 0 < α < 1/2 and

α ≤ λ∗ ≤ α
1−α

. Therefore, we want upper bounds to both these quantities. Some appropriate

choices are as follows:

|S| = |TA(B) ∩ [b,∞)| ≤ |TA(B)|

h(b− 1) ≤ max
b′∈A(C(B))

h(b′) = h(C(B))

The bound on h(b− 1) uses the fact that since b− 1 /∈ TA(B) by the definition of b, it must

be in the longest path at B. Then, the height of some block in the longest path at B is

maximized at the longest chain at B. So, we can use this to lower bound the inequality f

for any b:

f =

(
− |S|+

(
x+ h(C(B))− |S| − h(b− 1)

)
( α
1−2α

)

)
(1− λ∗)−

(
x+ h(C(B))− h(b− 1)

)
λ∗

≥
(
− |TA(B)|+

(
x+ h(C(B))− |TA(B)| − h(C(B))

)
( α
1−2α

)

)
(1− λ∗)−

(
x+ h(C(B))− h(C(B))

)
λ∗
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=

(
− |TA(B)|+

(
x− |TA(B)|

)
( α
1−2α

)

)
(1− λ∗)− xλ∗

Since this is a lower bound that does not depend on b, if we find that

(
− |TA(B)|+

(
x− |TA(B)|

)
( α
1−2α

)

)
(1− λ∗)− xλ∗ > 0

then this implies that for all choices of b, we have f > 0 so that Theorem 8.7 tells us it is

optimal to capitulate to B0. But, this new inequality is positive exactly under the assumed

bound on x, as solved by Mathematica [5], and so the proof is complete.
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I Omitted Proofs from Section 9

I.1 Omitted Proofs from Section 9.1

Proof of Lemma 9.6. Let B′ be a state such that B′ ∈ (A, xH)y∆ for x ∈ {3, 4} with

y /∈ {1, x} and B′ is subsequent to state (A, xH, 2A) but is not subsequent to any state in

(A, xH)(−1)∆. Consider three possible cases on y:

• y = 0: Then, there are no timeserving actions at B′. Clearly, there is no timeserving

action which publishes block 1 since block 1 is at a deficit of x blocks. Furthermore,

there is no timeserving action which publishes some block > x + 1. If there were a

timeserving action that publishes some block > x+1 at B′, then this implies that there

is some time t such that the attacker has mined more blocks than the honest miner

over all blocks greater than t, or |TA(B
′) ∩ [t,∞)| > |TH(B

′) ∩ [t,∞)|. But, if this

were true, then the attacker must have mined fewer blocks than the honest miner over

all blocks between x + 1 and t in order for the attacker’s current lead over all blocks

> x+1 to be 0, or |TA(B
′)∩ (x+1, t)| < |TH(B

′)∩ (x+1, t)|. But, this last inequality

contradicts the fact that B′ is not subsequent to any state in (A, xH)(−1)∆. So, there

are no at-risk blocks at B′.

• 1 < y < x: Block 1 is still at a deficit of x−y > 1 blocks so block 1 cannot be published

in a timeserving manner. So, we only have to show that no attacker blocks > x + 1

are at risk. Consider that the attacker plays Wait. Then, at the next time step, the

attacker has at least a lead of 1 block over all blocks > x+1. But, if the attacker has a

lead of 1 block over all blocks > x+1, then the attacker can publish all blocks > x+1

on block x+ 1 to fork the longest path above height h(x+ 1). So, any block that the

attacker owns > x+1 may still be included in the longest path with probability 1 even

if the attacker plays Wait and therefore there are no at-risk blocks at B′.
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• y > x: Consider that the attacker playsWait. Then, at the next time step, the attacker

has at least a lead of x blocks over all blocks > x+1. But, if the attacker has a lead of

x blocks over all blocks > x+ 1, then the attacker can publish all blocks they own to

fork all honest blocks in the longest path. So, any block that the attacker owns may

still be included in the longest path with probability 1 even if the attacker plays Wait

and therefore there are no at-risk blocks at B′.

In all cases, there are no at-risk blocks at B′. Therefore, by Corollary 9.5, the action Wait

is optimal at B′.

I.2 Omitted Proofs from Section 9.2

Proof of Lemma 9.10. Let B′ be a state such that B′ ∈ (A, xH)x∆ for x ∈ {3, 4} and B′ is

subsequent to state (A, xH, 2A) but is not subsequent to any state in (A, xH)(−1)∆. Then,

the only at-risk block at B′ is block 1. Therefore, by Conjecture 9.7, if the attacker publishes

any blocks at B′, they necessarily publish block 1. However, since an optimal strategy is

timeserving and PublishPath(TA(B
′), 0) is the only timeserving action which publishes block

1, if the attacker publishes any blocks at B′, they must take action PublishPath(TA(B
′), 0),

which completes the proof.

I.3 Omitted Proofs from Section 9.3

Claim I.1. For x ≥ 2, let B = (A, xH). If B′ ∈ B1∆ is a state which is subsequent to

sate (A, xH, 2A) but is not subsequent to any state in (A, xH)(−1)∆, then the h(C(B))-

capitulation of B′ is in Ca(B1,0).

Proof. For x ≥ 2, let B = (A, xH). Also, let B′ ∈ B1∆ be a state which is subsequent to

sate (A, xH, 2A) but is not subsequent to any state in (A, xH)(−1)∆. Denote the h(C(B))-

capitulation of B′ as B′′. Recall, by Definition B.32, Ca(B1,0) is the collection of states B′′
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where

Ca(B1,0) = {B′′ is a state : A(C(B′′)) ∩ TA(B
′′) = ∅,

|TA(B
′′)| − |TA(B1,0)| = h(C(B′′)),

h(C(B′′))− capitulation of B′′ is state B1,0}

We will show that B′′ satisfies these three properties:

• A(C(B′′)) ∩ TA(B
′′) = ∅: By definition, for any state in B1∆, all blocks mined by the

attacker are unpublished. But, if no attacker blocks are published at B′, then certainly

there cannot be any attacker blocks published at B′′. Therefore, A(C(B′′)) = ∅ and so

A(C(B′′)) ∩ TA(B
′′) = ∅.

• |TA(B
′′)| − |TA(B1,0)| = h(C(B′′)): Since the only published blocks at B′′ are honest

miner blocks, then h(C(B′′)) = |TH(B
′′)|. Now, consider that a block is in B′′ if and

only if it is > x + 1, since this is precisely the set of blocks which may reach height

> h(C(B)). But, since B′ ∈ B1∆ tells us that the attacker has mined one more block

than the honest miner over all blocks > x + 1, and B′′ is precisely the set of blocks

> x + 1, then we know that |TA(B
′′)| = |TH(B

′′)| + 1. Recalling that |TA(B1,0)| = 1,

this completes the claim:

|TA(B
′′)| − |TA(B1,0)| = |TH(B

′′)|+ 1− |TA(B1,0)|

= |TH(B
′′)|+ 1− 1

= |TH(B
′′)|

= h(C(B′′))

• h(C(B′′)) capitulation of B′′ is state B1,0: First, we show that at least one block can
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reach height h(C(B′′))+1. Clearly, the attacker can take action PublishPath(TA(B
′′), 0),

that is, publishing a chain of all attacker blocks at B′′ on the genesis block.10 Since

we have already shown that |TA(B
′′)| = |TH(B

′′)| + 1 = h(C(B′′)) + 1, this certainly

creates a unique longest chain of length h(C(B′′)) + 1. Therefore, by this action, some

attacker block resides at height h(C(B′′))+1 and so it is shown that at least one block

can reach height h(C(B′′)) + 1.

Now, we show that at most one block can reach height h(C(B′′)) + 1. The proof is by

contradiction. Assume that more than 1 block can reach height h(C(B′′)) + 1. Then

there must be some block b in B′′ where the attacker owns two more blocks than the

honest miner, of all blocks > b. However, since the attacker owns one more block than

the honest miner of all blocks in B′′, this means that the attacker one less block than

the honest miner of all blocks ≤ b. But, this is a contradiction, since this implies that

B′ is subsequent to some state in (A, xH)(−1)∆, yet we have assumed B′ not to be.

Since it is shown that the attacker owns at least one block that can reach height

h(C(B′′)) + 1 and at most one block that can reach height h(C(B′′)) + 1, then the

attacker must own exactly one block that can reach height h(C(B′′)) + 1. Trivially,

the honest miner owns no blocks that can reach height h(C(B′′)) + 1 since all honest

miner blocks are published in the longest path at heights ≤ h(C(B′′)). Therefore, the

h(C(B′′))-capitulation of B′′ is B1,0, which completes the claim.

Therefore, it is shown that the h(C(B))-capitulation of B′ is in Ca(B1,0), and so the proof

is complete.

Claim I.2. At a state B′ ∈ (A, xH)1∆ for x ∈ {2, 3, 4} that is subsequent to state (A, xH, 2A)

but is not subsequent to any state in (A, xH)(−1)∆, it cannot be optimal for mining strength

αPoS to play Wait.
10Note that we assume all blocks are relabeled when capitulating a state so the use of 0 here means the

genesis block at the capitulated state B′′ which is not the same as the genesis block at state B′.
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Proof. Let α = αPoS. Let B = (A, xH) for x ∈ {2, 3, 4}. Also, let B′ ∈ B1∆ be a state

which is subsequent to sate (A, xH, 2A) but is not subsequent to any state in B(−1)∆.

Note that the assumptions on B′ imply the following relation, which we will use fre-

quently:

|TA(B
′) \ TA(B)| = |TH(B

′) \ TH(B)|+ 1 = h(C(B′))− h(C(B)) + 1

Consider the action PublishPath
(
UA(B′) ∩ (x+ 1,∞), x+ 1

)
at B′. Trivially, this action

is valid by construction. Also, this action is checkpoint recurrent since the only checkpoint

at B′ is the genesis block which is not forked by this action and the action is opportunistic

by construction such that, if it establishes a checkpoint, it does not own any blocks in excess

of this checkpoint. We will show that playing PublishPath
(
UA(B′) ∩ (x + 1,∞), x + 1

)
is

better than playing Wait, which implies the claim that it cannot be optimal to play Wait.

First, let’s calculate the value to stateB′ from playing PublishPath
(
UA(B′)∩(x+1,∞), x+

1
)
. First, it is easy to see that this action is timeserving, since it publishes

|UA(B′) ∩ (x+ 1,∞)| = |TA(B
′) \ TA(B)|

= |TH(B
′) \ TH(B)|+ 1

= h(C(B′))− h(C(B)) + 1

blocks on top of block x+ 1, which has height h(x+ 1) = h(C(B)) such that the maximum

block in the published set reaches height

h(x+ 1) + |UA(B′) ∩ (x+ 1,∞)| = h(C(B)) + h(C(B′))− h(C(B)) + 1

= h(C(B′)) + 1

This action is also LPM since x+1 ∈ h(C(B′)) by virtue of x+1 ∈ TH(B
′) and the attacker

282



not forking the longest chain prior to B′. Therefore, this action only changes the longest

path at heights > h(C(B)). But since only the honest miner owns blocks in the longest path

at B′, this action must simply kick out h(C(B′)) − h(C(B)) honest miner blocks and insert

h(C(B′))− h(C(B)) + 1 attacker blocks. Let B′′ be the state which follows this action at B′.

Also, let λ∗ = maxπ Rev(π, α) be the revenue of an optimal checkpoint recurrent, positive

recurrent strategy. Then, using Lemma B.9 (Bellman’s Principle of Optimality) we can use

this to lower bound the value of state B′ as

VαPoS(B′) ≥ rλ
∗
(B′, B′′) + VαPoS(B′′)

≥ rλ
∗
(B′, B′′)

= (h(C(B′))− h(C(B)) + 1)(1− λ∗)− (h(C(B′))− h(C(B)))(−λ∗)

= h(C(B′))− h(C(B)) + 1− λ∗

= |TH(B
′) \ TH(B)|+ 1− λ∗

= |TA(B
′) \ TA(B)| − λ∗

= h(C(B′))− h(C(B)) + 1− λ∗

The second line is because VαPoS(B′′) ≥ 0 since an optimal strategy may always capitulate

to B0. The third line is by the discussion above that h(C(B′))−h(C(B))+ 1 attacker blocks

are inserted into the longest chain and h(C(B′))− h(C(B)) honest blocks removed from the

longest chain. The rest is simplification using what we know about state B′.

Now, let’s upper bound the value of playing Wait. Let π be any checkpoint recurrent,

positive recurrent strategy which plays Wait at state B′. Additionally, let Z1 be the sub-

sequent state if the attacker creates and hides the next block and let Z2 be the subsequent

state when the honest miner creates and publishes the next block. Then,

Vπ
α,λ∗(B′) = αVπ

α,λ∗(Z1) + (1− α)(Vπ
α,λ∗(Z2)− λ∗) ≤ αVαPoS(Z1) + (1− α)(VαPoS(Z2)− λ∗)
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where the second inequality follows by Lemma B.9 which states Vπ
α,λ∗(B′) ≤ VαPoS(B′) for

any state B′ and strategy π.

Now, let’s upper bound the value to state Z1. By Claim I.1, the h(C(B))-capitulation

of B′ is in Ca(B1,0). Therefore, since mining a new block does not change the height that

any previously mined block may reach, we must have that the h(C(B))-capitulation of Z1

is in Ca(B2,0). Then, we may apply Corollary 6.3 to state Z1, with N = 2 and sequence

(0, 1, h(C(B))). This sequence induces the sequence of states (B′
0, B

′
1, B

′
2).

By the corollary statement, B′
0 = Z1. From state B, the attacker needs a lead of at least

x blocks to ever be able to publish block 1. Now, Z1 ∈ B2∆, which means that the attacker

needs x− 2 more blocks to ever be able to publish block 1. So, by a familiar coupling with

random walks, the probability of ever publishing block 1 from Z1 is at most ( α
1−α

)x−2. But,

since the attacker owns the block in the longest chain at height 1 if and only if the attacker

publishes block 1, this tells us that Pr[H1(Xτ ) ∈ TA(Xτ ) | X0 = Z1] ≤ ( α
1−α

)x−2.

Next, B′
1 which is the 1-capitulation of Z1 is some state in ((x− 1)H) 2∆, since it simply

deletes blocks 1 and 2 from Z1. But, since the first x−1 blocks in the longest path are honest

miner blocks at this capitulated state, they must all be checkpoints, such that the attacker

has a zero probability of ever forking them and thus a zero probability of ever owning the

blocks in the longest chain at heights {1, ..., x− 1}. In other words, for all j ∈ {1, ..., x− 1},

we know that Pr[Hj(Xτ ) ∈ TA(Xτ ) | X0 = B′
1] = 0.

Finally, B′
2 which is the h(C(B))-capitulation of Z1 is already argued to be in Ca(B2,0).

But, by Theorem B.3, we know that for any state B′
2 ∈ Ca(B2,0), if

α(1−α)2

(1−2α)2
≤ 2, the value

of this state is (|TA(B
′
2)| + α

1−2α
)(1 − λ∗) + |TH(B

′
2)|λ∗, since the optimal strategy selfish

mines on the excess blocks then publishes all blocks the next time the game reaches a state

in Ca(B1,0). But, we know that αPoS satisfies this, so at αPoS this must also be the value of
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this state. Altogether, the corollary gives us:

VαPoS(Z1) ≤ VαPoS(B′
N) + rλ

∗
(B0, B

′
N)− rλ

∗
(B0, Z1)− aNλ

∗

+
N∑
i=1

ai−ai−1∑
j=1

Pr[Hj(Xτ ) ∈ TA(Xτ ) | X0 = B′
i−1]

= VαPoS(B′
2) + rλ

∗
(B0, B

′
2)− rλ

∗
(B0, Z1)− h(C(B))λ∗

+
2∑

i=1

ai−ai−1∑
j=1

Pr[Hj(Xτ ) ∈ TA(Xτ ) | X0 = B′
i−1]

= VαPoS(B′
2)− (h(C(B′))− h(C(B)))λ∗ − (−h(C(B′))λ∗)− h(C(B))λ∗

+
1∑

j=1

Pr[Hj(Xτ ) ∈ TA(Xτ ) | X0 = Z1]

+

h(C(B))−1∑
j=1

Pr[Hj(Xτ ) ∈ TA(Xτ ) | X0 = B′
1]

≤ (|TA(B
′
2)|+ α

1−2α
)(1− λ∗) + |TH(B

′
2)|λ∗ + ( α

1−α
)x−2

= (|TH(B
′
2)|+ 2 + α

1−2α
)(1− λ∗) + (h(C(B′))− h(C(B)))λ∗ + ( α

1−α
)x−2

= (h(C(B′))− h(C(B)) + 2 + α
1−2α

)(1− λ∗) + (h(C(B′))− h(C(B)))λ∗ + ( α
1−α

)x−2

= (2 + α
1−2α

)(1− λ∗) + (h(C(B′))− h(C(B))) + ( α
1−α

)x−2

Next, let’s upper bound the value to state Z2. By Claim I.1, the h(C(B))-capitulation of

B′ is in Ca(B1,0). Therefore, since the honest miner has mined and published a block between

B′ and Z2 to increase the height of the longest chain by one, we must have that the h(C(B))-

capitulation of Z2 is in Ca(B0). Then, since block 1 does not help any block > x+1 reach a

greater height, we know that the h(C(Z2))-capitulation of Z2 must be B0. Then, we would

like to apply Corollary 6.3 to state Z2, with N = 3 and sequence (0, 1, h(C(B)), h(C(Z2))).

This sequence induces the sequence of states (B′
0, B

′
1, B

′
2, B

′
3).

By the corollary statement, B′
0 = Z2. From state B, the attacker needs a lead of at
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least x blocks to ever be able to publish block 1. Now, Z2 ∈ B0∆, which means that the

attacker still needs at least x more blocks to ever be able to publish block 1. So, by a familiar

coupling with random walks, the probability of ever publishing block 1 from Z2 is at most

( α
1−α

)x. But, since the attacker owns the block in the longest chain at height 1 if and only if

the attacker publishes block 1, this tells us that Pr[H1(Xτ ) ∈ TA(Xτ ) | X0 = Z2] ≤ ( α
1−α

)x.

Next, B′
1 which is the 1-capitulation of Z2 is some state in ((x− 1)H) 0∆, since it simply

deletes blocks 1 and 2 from Z1. But, since the first x− 1 blocks in the longest path are still

honest miner blocks at this capitulated stated, they must all be checkpoints, and the rest of

the analysis for this state is handled identically to B′
1 which was the 1-capitulation of Z1.

For B′
2 which is the h(C(B))-capitulation of Z2, we have already stated that B′

2 ∈ Ca(B0).

This means that the h(C(B′
2))-capitulation of B′

2 is B0. In other words, the number of

attacker blocks and honest miner blocks at B′
2 are equal and no attacker block can reach

height > h(C(B′
2)). So, the attacker needs a lead of at least 1 block to ever be able to publish

any block in TA(B
′
2). In turn, from B′

2, the attacker only owns the block in the longest chain

at height 1 if they are able to publish a block from TA(B
′
2). Therefore, by a familiar coupling

with random walks, for all j ∈ {1, ..., h(C(B′
2))}, we have Pr[Hj(Xτ ) ∈ TA(Xτ ) | X0 = B′

2] ≤
α

1−α
.

Finally, B′
3 is the h(C(Z2))-capitulation of Z2, which we have already stated to be B0.

This is a well-known state so no further discussion is needed here. Altogether, the corollary

gives us:

VαPoS(Z2) ≤ VαPoS(B′
N) + rλ

∗
(B0, B

′
N)− rλ

∗
(B0, Z2)− aNλ

∗

+
N∑
i=1

ai−ai−1∑
j=1

Pr[Hj(Xτ ) ∈ TA(Xτ ) | X0 = B′
i−1]

= VαPoS(B′
3) + rλ

∗
(B0, B

′
3)− rλ

∗
(B0, Z2)− h(C(Z2))λ

∗
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+
3∑

i=1

ai−ai−1∑
j=1

Pr[Hj(Xτ ) ∈ TA(Xτ ) | X0 = B′
i−1]

= VαPoS(B0) + rλ
∗
(B0, B0)− (− (h(C(B′)) + 1)λ∗)− (h(C(B′)) + 1)λ∗

+
1∑

j=1

Pr[Hj(Xτ ) ∈ TA(Xτ ) | X0 = Z2]

+

h(C(B))−1∑
j=1

Pr[Hj(Xτ ) ∈ TA(Xτ ) | X0 = B′
1]

+

h(C(Z2))−h(C(B))∑
j=1

Pr[Hj(Xτ ) ∈ TA(Xτ ) | X0 = B′
2]

≤ ( α
1−α

)x +

h(C(Z2))−h(C(B))∑
j=1

( α
1−α

)

= ( α
1−α

)x + (h(C(Z2))− h(C(B))) ( α
1−α

)

= ( α
1−α

)x + (h(C(B′)) + 1− h(C(B))) ( α
1−α

)

Revisiting Vπ
α,λ∗(B′), we can plug in the bounds to obtain:

Vπ
α,λ∗(B′) ≤ αVαPoS(Z1) + (1− α)(VαPoS(Z2)− λ∗)

≤ α
(
(2 + α

1−2α
)(1− λ∗) + (h(C(B′))− h(C(B))) + ( α

1−α
)x−2

)
+ (1− α)(

(
( α
1−α

)x + (h(C(B′)) + 1− h(C(B))) ( α
1−α

)
)
− λ∗)

Now, we would like to show that

Vπ
α,λ∗(B′) < h(C(B′))− h(C(B)) + 1− λ∗ ≤ VαPoS(B′)

where the middle term what we have derived earlier to be a lower bound to VαPoS(B′) from

a strategy which takes action PublishPath(UA(B′) ∩ (x + 1,∞), x + 1). The reason we are

interesting in satisfying this inequality is because, if Vπ
α,λ∗(B′) < VαPoS(B′), then π cannot
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be optimal and thus it is shown that the action Wait at state B′ cannot be optimal. Recall

that, since we have assumed α = αPoS, we have αPoS = λ∗maxπ Rev(π, αPoS) at αPoS, as

part of the definition of αPoS. So, everywhere in the inequality above, we can substitute in

αPoS for λ∗. Then, as solved by Mathematica [5], this inequality is true for all x ∈ {2, 3, 4},

all h(C(B′)) − h(C(B)) ∈ N, and all α ≤ 1/3 (where this upper bound on α is not strict).

But, because we know αPoS < 1/3, it immediately follows that this inequality holds at αPoS,

and so it is shown that Wait cannot be optimal at B′ and thus completes the proof.

Claim I.3. Let α = αPoS. Additionally, let B′ ∈ (A, xH)1∆ for x ∈ {2, 3, 4} be a state which

is subsequent to state (A, xH, 2A) but is not subsequent to any state in (A, xH)(−1)∆. If

PublishPath
(
UA(B′)∩ (x+1,∞), x+1

)
is the only structured action besides Wait, then this

action followed by a capitulation to B0 is optimal.

Proof. By Claim I.2, it cannot be optimal to play Wait at this state. Then, by Theorem

5.10, without loss of generality, an optimal strategy is structured such that it always takes

actions which are structured. Therefore, the only structured action besides Wait at state B′

must be optimal. This action establishes a checkpoint since the only remaining unpublished

block, which is block 1, will be outnumbered by the ≥ 2 attacker blocks in the longest path.

Then, since the action is opportunistic, the attacker will own no unpublished blocks past the

checkpoint such that a capitulation to B0 is optimal.

Claim I.4. Let B′ ∈ (A, xH)1∆ for x ∈ {2, 3, 4} be a state which is subsequent to state

(A, xH, 2A) but is not subsequent to any state in (A, xH)0∆. Then PublishPath
(
UA(B′) ∩

(x+ 1,∞), x+ 1
)
is the only structured action besides Wait.

Proof. The proof is by contradiction. Suppose that at state B′, there is another structured

action PublishPath(Q′, v′). The only timeserving action that publishes on block x + 1 is

PublishPath
(
UA(B′)∩ (x+1,∞), x+1

)
. Then, since we have assumed PublishPath(Q′, v′) to

be a different timeserving action, we know that v′ ̸= x+1. Furthermore, since PublishPath(Q′, v′)
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is timeserving,

h(v′) + |Q′| ≥ h(C(B′)) + 1 =⇒ |Q′| ≥ h(C(B′)) + 1− h(v′)

=⇒ |UA(B′) ∩ (v′,∞)| ≥ h(C(B′)) + 1− h(v′)

=⇒ |TA(B
′) ∩ (v′,∞)| ≥ h(C(B′)) + 1− h(v′)

=⇒ |TA(B
′) ∩ (v′,∞)| ≥ |TH(B

′) ∩ (v′,∞)|+ 1

where the second line uses the fact that Q′ ⊆ UA(B′)∩(v′,∞) by virtue of PublishPath(Q′, v′)

a timeserving action, the third line uses the fact that UA(B′)∩ (v′,∞) = TA(B
′)∩ (v′,∞) by

virtue of the attacker having no published blocks at B′, and the fourth line uses the fact that

h(C(B′)) − h(v′) = |TH(B
′) ∩ (v′,∞)| since the only blocks in the longest path are honest

miner blocks.

But, since B′ ∈ (A, xH)1∆, we know that

|TA(B
′) ∩ (x+ 1,∞)| = |TH(B

′) ∩ (x+ 1,∞)|+ 1

|TA(B
′) ∩ (x+ 1, v′]|+ |TA(B

′) ∩ (v′,∞)| = |TH(B
′) ∩ (x+ 1, v′]|+ |TH(B

′) ∩ (v′,∞)|+ 1

|TA(B
′) ∩ (x+ 1, v′]|+ |TA(B

′) ∩ (v′,∞)| = |TH(B
′) ∩ (x+ 1, v′]|+ |TH(B

′) ∩ (v′,∞)|+ 1

Plugging in |TA(B
′) ∩ (v′,∞)| ≥ |TH(B

′) ∩ (v′,∞)|+ 1, we find that

|TA(B
′) ∩ (x+ 1, v′]| ≤ |TH(B

′) ∩ (x+ 1, v′]|

This means that at time v′, the game was at a state in (A, xH)y∆ for y ≤ 0. But, if the

game was at state (A, xH, 2A) ∈ (A, xH)2∆ at time x + 3 and the game was at a state in

(A, xH)y∆ for y ≤ 0 at time v′, then it certainly was at a state in (A, xH)0∆ at some time
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in (x+3, v′]. However, this is a contradiction since we have assumed B′ to not be subsequent

to any state in (A, xH)0∆. Therefore, such an alternative structured publish action must

not exist and thus the claim is proven.

Proof of Lemma 9.11. By Claim I.3 if PublishPath
(
UA(B′) ∩ (x + 1,∞), x + 1

)
is the only

structured action besides Wait at state B, then this action following by a capitulation to

B0 must be optimal. Indeed, by Claim I.4, at B′, the action PublishPath
(
UA(B′) ∩ (x +

1,∞), x+ 1
)
is the only structured action besides Wait, which completes the proof.

Proof of Lemma 9.12. From the proof of Lemma 8.4, recall that

VαPoS(B1,1) = Pr[H1(Xτ ) ∈ TA(Xτ ) | X2 = B1,1]

Further recall that an attacker using an optimal structured strategy owns the block at height

1 in the longest path if and only if they publish block 1. So, we have to bound the probability

that block 1 is ever published by an optimal structured strategy. Note that the following is

a complete partition of the state space that an optimal structured strategy may reach from

B1,1:

(A,H,A), (A, 2H,A), (A, 3H,A), (A, 4H,A), (A, 5H), (A, 6H)

Now, let’s assume that an optimal strategy does not publish at any of (A, 2H,A), (A, 3H,A),

or (A, 4H,A). Note that this is an optimistic assumption with respect to computing the

probability that block 1 is ever published, since publishing at any of these states would

necessitate a capitulation to B0 by the fact that the strategy is assumed to be checkpoint

recurrent. So, we can further expand this list:

(A,H,A), (A, 2H, 2A), (A, 2H,A,H), (A, 3H, 2A), (A, 3H,A,H), (A, 4H, 2A),
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(A, 4H,A,H), (A, 5H), (A, 6H)

Since there is no structured publish action available at either of (A, 3H, 2A) or (A, 4H, 2A),

we can expand these once more:

(A,H,A), (A, 2H, 2A), (A, 2H,A,H), (A, 3H, 3A), (A, 3H, 2A,H), (A, 3H,A,H),

(A, 4H, 3A), (A, 4H, 2A,H), (A, 4H,A,H), (A, 5H), (A, 6H)

Denote this set of states as S. Now, since S represents a complete partition of the state

space that an optimal structured strategy may reach, with a few optimistic assumptions in

some places, we know that

Pr[H1(Xτ ) ∈ TA(Xτ ) | X2 = B1,1] ≤
∑
B∈S

Pr[X|B| = B]Pr[H1(Xτ ) ∈ TA(Xτ ) | X2 = B1,1, X|B| = B]

Let’s look at each state in S separately:

• (A,H,A): This state is one attacker block past B1,1, so Pr[X|(A,H,A)| = (A,H,A)] = α.

Furthermore, block 1 can be published at this state, so Pr[H1(Xτ ) ∈ TA(Xτ ) | X2 =

B1,1, X|(A,H,A)| = (A,H,A)] ≤ 1.

• (A, 2H, 2A): This state is one honest miner block and two attacker blocks past B1,1,

so Pr[X|(A,2H,2A)| = (A, 2H, 2A)] = α2(1 − α). Furthermore, block 1 can be published

at this state, so Pr[H1(Xτ ) ∈ TA(Xτ ) | X2 = B1,1, X|(A,2H,2A)| = (A, 2H, 2A)] ≤ 1.

• (A, 2H,A,H): This state is two honest miner blocks and one attacker block past B1,1,

so Pr[X|(A,2H,A,H)| = (A, 2H,A,H)] = α(1−α)2. Furthermore, block 1 is at a deficit of

2 blocks to ever being published, so Pr[H1(Xτ ) ∈ TA(Xτ ) | X2 = B1,1, X|(A,2H,A,H)| =

(A, 2H,A,H)] ≤ ( α
1−α

)2.
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• (A, 3H, 3A): This state is two honest miner blocks and three attacker blocks past B1,1,

so Pr[X|(A,3H,3A)| = (A, 3H, 3A)] = α3(1− α)2. Furthermore, block 1 can be published

at this state, so Pr[H1(Xτ ) ∈ TA(Xτ ) | X2 = B1,1, X|(A,3H,3A)| = (A, 3H, 3A)] ≤ 1.

• (A, 3H, 2A,H): This state is three honest miner blocks and two attacker block past

B1,1, so Pr[X|(A,3H,2A,H)| = (A, 3H, 2A,H)] = α2(1 − α)3. Furthermore, by Lemma

9.11, since (A, 3H, 2A,H) ∈ (A, 3H)1∆ is subsequent to state (A, 3H, 2A) but not

subsequent to any state in (A, 3H)0∆, an optimal action publishes all blocks except

for 1 and capitulates to B0, or Pr[H1(Xτ ) ∈ TA(Xτ ) | X2 = B1,1, X|(A,3H,2A,H)| =

(A, 3H, 2A,H)] = 0.

• (A, 3H,A,H): This state is three honest miner blocks and one attacker block past B1,1,

so Pr[X|(A,3H,A,H)| = (A, 3H,A,H)] = α(1−α)3. Furthermore, block 1 is at a deficit of

3 blocks to ever being published, so Pr[H1(Xτ ) ∈ TA(Xτ ) | X2 = B1,1, X|(A,3H,A,H)| =

(A, 3H,A,H)] ≤ ( α
1−α

)3.

• (A, 4H, 3A): This state is three honest miner blocks and three attacker block past B1,1,

so Pr[X|(A,4H,3A)| = (A, 4H, 3A)] = α3(1 − α)3. Furthermore, block 1 is at a deficit of

1 block to ever being published, so Pr[H1(Xτ ) ∈ TA(Xτ ) | X2 = B1,1, X|(A,4H,3A)| =

(A, 4H, 3A)] ≤ ( α
1−α

).

• (A, 4H, 2A,H): This state is four honest miner blocks and two attacker block past

B1,1, so Pr[X|(A,4H,2A,H)| = (A, 4H, 2A,H)] = α2(1 − α)4. Furthermore, by Lemma

9.11, since (A, 4H, 2A,H) ∈ (A, 4H)1∆ is subsequent to state (A, 4H, 2A) but not

subsequent to any state in (A, 4H)0∆, an optimal action publishes all blocks except

for 1 and capitulates to B0, or Pr[H1(Xτ ) ∈ TA(Xτ ) | X2 = B1,1, X|(A,4H,2A,H)| =

(A, 4H, 2A,H)] = 0.

• (A, 4H,A,H): This state is four honest miner blocks and one attacker block past B1,1,
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so Pr[X|(A,4H,A,H)| = (A, 4H,A,H)] = α(1−α)4. Furthermore, block 1 is at a deficit of

4 blocks to ever being published, so Pr[H1(Xτ ) ∈ TA(Xτ ) | X2 = B1,1, X|(A,4H,A,H)| =

(A, 4H,A,H)] ≤ ( α
1−α

)4.

• (A, 5H): This state is four honest miner blocks past B1,1, so Pr[X|(A,5H)| = (A, 5H)] =

(1 − α)4. Furthermore, block 1 is at a deficit of 5 blocks to ever being published, so

Pr[H1(Xτ ) ∈ TA(Xτ ) | X2 = B1,1, X|(A,5H)| = (A, 5H)] ≤ ( α
1−α

)5.

• (A, 6H): This state is five honest miner blocks past B1,1, so Pr[X|(A,6H)| = (A, 6H)] =

(1 − α)5. Furthermore, by Theorem 8.3, an optimal strategy capitulates from B1,6 to

B0, or Pr[H1(Xτ ) ∈ TA(Xτ ) | X2 = B1,1, X|(A,6H)| = (A, 6H)] = 0.

Putting this altogether, we have:

Pr[H1(Xτ ) ∈ TA(Xτ ) | X2 = B1,1] ≤ α + α2(1− α) + α(1− α)2( α
1−α

)2 + α3(1− α)2 + α(1− α)3( α
1−α

)3

+ α3(1− α)3( α
1−α

) + α(1− α)4( α
1−α

)4 + (1− α)4( α
1−α

)5

Simplifying, this gives us

VαPoS(B1,1) ≤ αPoS−(αPoS)4+(αPoS)5+(αPoS)6−(αPoS)7

1−(αPoS)

which completes the proof.

Proof of Theorem 9.13. From the proof of Theorem 8.6, recall that

VαPoS(B1,1) =
1−3αPoS+(αPoS)2

2αPoS−1

So, we can plug in the bound due to Lemma 9.12 to get

VαPoS(B1,1) =
1−3αPoS+(αPoS)2

1−2αPoS ≤ αPoS−(αPoS)4+(αPoS)5+(αPoS)6−(αPoS)7

1−(αPoS)
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which we can easily solve with Mathematica [5] to find αPoS ≥ 0.309357.

Proof of Lemma 9.15. Recall the proof of Lemma 9.12. This proof is identical except for the

fact that we now use Pr[H1(Xτ ) ∈ TA(Xτ ) | X2 = B1,1, X|(A,5H)| = (A, 5H)] = 0. This gives

us

Pr[H1(Xτ ) ∈ TA(Xτ ) | X2 = B1,1] ≤ α + α2(1− α) + α(1− α)2( α
1−α

)2 + α3(1− α)2 + α(1− α)3( α
1−α

)3

+ α3(1− α)3( α
1−α

) + α(1− α)4( α
1−α

)4

But, this simplifies to

VαPoS(B1,1) ≤ αPoS + (αPoS)2 + (αPoS)3 + (αPoS)6

which completes the proof.

Proof of Theorem 9.16. From the proof of Theorem 8.6, recall that

VαPoS(B1,1) =
1−3αPoS+(αPoS)2

2αPoS−1

So, we can plug in the bound due to Lemma 9.15 to get

VαPoS(B1,1) =
1−3αPoS+(αPoS)2

1−2αPoS ≤ αPoS + (αPoS)2 + (αPoS)3 + (αPoS)6

which we can easily solve with Mathematica [5] to find αPoS ≥ 0.310055.

Proof of Lemma 9.17. Recall the proof of Lemma 9.12. Let the setup be the same except

we now use the partition

(A,H,A), (A, 2H, 2A), (A, 2H,A,H), (A, 3H, 2A), (A, 3H,A,H), (A, 4H, 2A),
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(A, 4H,A,H), (A, 5H)

So, let’s calculate Pr[X|B| = B] and Pr[H1(Xτ ) ∈ TA(Xτ ) | X2 = B1,1, X|B| = B] for each

state that we have not already analyzed:

• (A, 3H, 2A): This state is two honest miner blocks and two attacker block past B1,1,

so Pr[X|(A,3H,2A)| = (A, 3H, 2A)] = α2(1 − α)2. By Lemma 9.11, if the attacker’s lead

over blocks > 4 ever decreases to 1 block, then the attacker will publish all blocks

except for block 1 and capitulate to B0. Then, since Conjecture 9.3 states that an

optimal strategy waits at all states where the attacker’s lead over blocks > 4 is not

1 block or 3 blocks, an optimal strategy can only publish block 1 from (A, 3H, 2A) if

the attacker gains a lead of 3 blocks before falling to a lead of 1 block. By a coupling

with random walks and Lemma C.4, this probability is α and so Pr[H1(Xτ ) ∈ TA(Xτ ) |

X2 = B1,1, X|(A,3H,2A)| = (A, 3H, 2A)] ≤ α.

• (A, 4H, 2A): This state is three honest miner blocks and two attacker block past B1,1,

so Pr[X|(A,3H,2A)| = (A, 3H, 2A)] = α2(1 − α)3. By Lemma 9.11, if the attacker’s lead

over blocks > 5 ever decreases to 1 block, then the attacker will publish all blocks

except for block 1 and capitulate to B0. Then, since Conjecture 9.3 states that an

optimal strategy waits at all states where the attacker’s lead over blocks > 5 is not

1 block or 4 blocks, an optimal strategy can only publish block 1 from (A, 4H, 2A) if

the attacker gains a lead of 4 blocks before falling to a lead of 1 block. By a coupling

with random walks and Lemma C.4, this probability is α2

1−α+α2 and so Pr[H1(Xτ ) ∈

TA(Xτ ) | X2 = B1,1, X|(A,3H,2A)| = (A, 3H, 2A)] ≤ α2

1−α+α2 .

Plugging this in, we get:

Pr[H1(Xτ ) ∈ TA(Xτ ) | X2 = B1,1] ≤ α + α2(1− α) + α(1− α)2( α
1−α

)2 + α3(1− α)2
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+ α(1− α)3( α
1−α

)3 + α2(1− α)3( α2

1−α+α2 ) + α(1− α)4( α
1−α

)4

But, this simplifies to

VαPoS(B1,1) ≤ αPoS+(αPoS)3+(αPoS)5+(αPoS)7

1−(αPoS)+(αPoS)2

which completes the proof.

Proof of Theorem 9.18. From the proof of Theorem 8.6, recall that

VαPoS(B1,1) =
1−3αPoS+(αPoS)2

2αPoS−1

But, if Conjecture 9.3 holds, we have

VαPoS(B1,1) =
1−3αPoS+(αPoS)2

1−2αPoS ≤ αPoS+(αPoS)3+(αPoS)5+(αPoS)7

1−(αPoS)+(αPoS)2

which we can easily solve with Mathematica [5] to find αPoS ≥ 0.310147.

I.4 Omitted Proofs from Section 9.4

Proof of Theorem 9.1. Let α = αPoS and let state B = (A, 2H, 2A).

Consider the action PublishPath ({1, 4, 5}, 0) at B. Trivially, this action is valid and

checkpoint recurrent. We will show that playing PublishPath
(
{1, 4, 5}, 0

)
is better than

playing Wait. This implies that Wait cannot be optimal. Then, since we know, without loss

of generality, an optimal strategy plays a structured action and the outlined action is the

only structured action aside from Wait, the outlined action must be optimal.

First, let’s lower bound the value to stateB with the reward from playing PublishPath
(
{1, 4, 5}, 0

)
.

The action PublishPath
(
{1, 4, 5}, 0

)
inserts three attacker blocks into the longest chain and
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removes two honest miner blocks from the longest chain. So, for B′ state which follows this

action at B and λ∗ = maxπ Rev(π, α) the revenue of an optimal strategy, we have:

VαPoS(B) ≥ 3(1− λ∗)− (−2λ∗) + VαPoS(B′) ≥ 3− λ∗

The second inequality is because VαPoS(B′) ≥ 0 since an optimal strategy may always capit-

ulate to B0.

Now, let’s upper bound the value of playing Wait. Let π be any checkpoint recurrent,

positive recurrent strategy which plays Wait at state B. Additionally, let Z1 = (A, 2H, 3A)

be the subsequent state if the attacker creates and hides the next block and let Z2 =

(A, 2H, 2A,H) be the subsequent state when the honest miner creates and publishes the

next block. Then,

Vπ
αPoS,λ∗(B

′) = αVπ
αPoS,λ∗(Z1) + (1− α)(Vπ

αPoS,λ∗(Z2)− λ∗) ≤ αVαPoS(Z1) + (1− α)(VαPoS(Z2)− λ∗)

where the second inequality follows by Lemma B.9 which states Vπ
αPoS,λ∗(B

′) ≤ VαPoS(B′) for

any states B′ and strategies π.

Now, let’s upper bound the value to state Z1 by using Corollary 6.3 with N = 2 and

sequence (0, 1, 2). This sequence induces the sequence of states (B′
0, B

′
1, B

′
2).

By the corollary statement, B′
0 = Z1. So, we are interested in the quantity Pr[H1(Xτ ) ∈

TA(Xτ ) | X0 = Z1]. We will use the loosest bound on this probability, which is Pr[H1(Xτ ) ∈

TA(Xτ ) | X0 = Z1] ≤ 1.

Next, B′
1 which is the 1-capitulation of Z1 is state (H, 3A). But, at this state, the first

blocks in the longest chain is a checkpoint, such that the attacker has a zero probability of

ever forking it and thus a zero probability of ever owning the blocks in the longest chain at

this heights. In other words, we know that Pr[H1(Xτ ) ∈ TA(Xτ ) | X0 = B′
1] = 0.

Finally, B′
2 which is the 2-capitulation of Z1 is state (3A) ∈ Ca(B3,0). But, since we
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have assumed that α = αPoS, this satisfies α(1−α)2

(1−2α)2
≤ 2. Then, by Theorem B.3 we know

the optimal value of this state to be VαPoS ((3A)) = (3 + 2( α
1−2α

))(1− λ∗), since the optimal

strategy selfish mines on these blocks then publishes all blocks the next time the game reaches

a state in Ca(B1,0). Altogether, the corollary gives us:

VαPoS(Z1) ≤ VαPoS(B′
N) + rλ∗(B0, B

′
N)− rλ∗(B0, Z1)− aNλ

∗

+
N∑
i=1

ai−ai−1∑
j=1

Pr[Hj(Xτ ) ∈ TA(Xτ ) | X0 = B′
i−1]

= VαPoS(B′
2) + rλ∗(B0, B

′
2)− rλ∗(B0, Z1)− a2λ

∗

+
2∑

i=1

ai−ai−1∑
j=1

Pr[Hj(Xτ ) ∈ TA(Xτ ) | X0 = B′
i−1]

= VαPoS ((3A)) + rλ∗ (B0, (3A))− rλ∗ (B0, (A, 2H, 3A))− 2λ∗

+
1∑

j=1

Pr[Hj(Xτ ) ∈ TA(Xτ ) | X0 = Z1]

+
1∑

j=1

Pr[Hj(Xτ ) ∈ TA(Xτ ) | X0 = B′
1]

≤ (3 + 2( α
1−2α

))(1− λ∗) + 0− (−2λ∗)− 2λ∗ + 1

= (3 + 2( α
1−2α

))(1− λ∗) + 1

Next, for state Z2 = (A, 2H, 2A,H), the optimal action is known by Lemma 9.11 to

be PublishPath({4, 5}, 3), which adds two attacker blocks to the longest path and removes

one honest miner block from the longest path. Then, an optimal strategy subsequently

capitulates to B0. So, we know the value of state Z2 exactly:

VαPoS(Z2) = 2(1− λ∗)− (−λ∗) + VαPoS(B0) = 2− λ∗
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Revisiting Vπ
αPoS,λ∗(B), we can plug in what we have derived to obtain:

Vπ
αPoS,λ∗(B

′) ≤ αVαPoS(Z1) + (1− α)(VαPoS(Z2)− λ∗)

≤ α
(
(3 + 2( α

1−2α
))(1− λ∗) + 1

)
+ (1− α)(2− λ∗ − λ∗)

≤ α
(
(3 + 2( α

1−2α
))(1− λ∗) + 1

)
+ (1− α)(2− 2λ∗)

Now, we would like to show that

Vπ
αPoS,λ∗(B) ≤ α

(
(3 + 2( α

1−2α
))(1− λ∗) + 1

)
+ (1− α)(2− 2λ∗) < 3− λ∗ ≤ VαPoS(B)

The reason we are interesting in satisfying this inequality is because, if Vπ
αPoS,λ∗(B) <

VαPoS(B), then π cannot be optimal and thus it is shown that the action Wait at state

B′ cannot be optimal. Recall that, since we have assumed α = αPoS, we have αPoS =

λ∗maxπ Rev(π, α) at αPoS, as part of the definition of αPoS. So, everywhere in the in-

equality above, we can substitute in αPoS for λ∗. Then, as solved by Mathematica [5], this

inequality is true for all α ≤ 1
2
(3 −

√
5). But, because we know αPoS < 1

2
(3 −

√
5), it im-

mediately follows that this inequality holds at αPoS, and so it is shown that Wait cannot be

optimal at B and thus completes the proof.

Claim I.5. Let Conjecture 9.3 and Conjecture 9.7 hold. Additionally, let B = (A, xH).

Then, for two states B′, B′′ ∈ Bx∆ for x ∈ {3, 4} which are subsequent to state (A, xH, 2A)

but are not subsequent to any state in (A, xH)0∆

VαPoS(B′) = VαPoS(B′′) + |TA(B
′) \ TA(B)| − |TA(B

′′) \ TA(B)|

Proof. Let x ∈ {3, 4}. By Lemma 9.11, at any state in (A, xH)1∆ which is subsequent to

state (A, xH, 2A) but not subsequent to any state in (A, xH)(−1)∆, an optimal strategy
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publishes all blocks > x + 1 and capitulates to B0. By Conjecture 9.3, an optimal strategy

waits at all states (A, xH)y∆ for y /∈ {1, x} which are subsequent to state (A, xH, 2A) but not

subsequent to any state in (A, xH)(−1)∆. Finally, by Conjecture 9.7, an optimal strategy at

any state in (A, xH)x∆ which is subsequent to state (A, xH, 2A) but not subsequent to any

state in (A, xH)(−1)∆ either publishes some set which includes block 1 or takes the action

Wait. But, Lemma 9.10 shows that in fact, Conjecture 9.7 implies that an optimal strategy

at any state in (A, xH)x∆ which is subsequent to state (A, xH, 2A) but not subsequent to

any state in (A, xH)(−1)∆ either publishes all unpublished blocks and capitulates to B0,

where this published set includes all blocks > x+ 1, or plays Wait.

Therefore, for B = (A, xH) and tB = x + 1 the assumptions we have made tell us

that, from any state B′ ∈ Bx∆ which is subsequent to state (A, xH, 2A) such that tB +

1 ∈ TA(B
′′) but not subsequent to any state in (A, xH)(−1)∆, an optimal strategy, with

certainty, eventually publishes all blocks > tB in the same time step the capitulates to B0.

Therefore, by Theorem 7.2, we know that for any two states B′, B′′ such that B′, B′′ ∈ Bx∆

which are subsequent to state (A, xH, 2A) but not subsequent to any state in (A, xH)(−1)∆,

we have

VαPoS(B′) = VαPoS(B′′) + |TA(B
′) \ TA(B)| − |TA(B

′′) \ TA(B)|

which completes the proof.

Proof of Lemma 9.19. Let α = αPoS. Also, let Conjecture 9.3, 9.7 hold. For some x ∈ {3, 4},

let B = (A, xH) and let B′ ∈ Bx∆ be a state which is subsequent to state (A, 3H, 2A) but

is not subsequent to any state in (A, 3H)(−1)∆.

Note that the assumptions on B′ imply the following relation, which we will use fre-
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quently:

|TA(B
′) \ TA(B)| = |TH(B

′) \ TH(B)|+ x

=⇒ |TA(B
′)| − |TA(B)| = |TH(B

′)| − |TH(B)|+ x

=⇒ |TA(B
′)| − 1 = |TH(B

′)| − x+ x

=⇒ |TA(B
′)| = |TH(B

′)|+ 1

By Conjecture 9.7 and Lemma 9.10, an optimal strategy is assumed to either play Wait

or take action PublishPath(UA(B′), 0) at B′. So, we simply have to compare the reward to

each action.

First, consider the action PublishPath
(
UA(B′), 0

)
at B′. Since the attacker has not yet

published any blocks by assumption, UA(B′) = TA(B
′) such that the action inserts |TA(B

′)|

attacker blocks into the longest chain and removes |TH(B
′)| = |TA(B

′)| − 1 honest miner

blocks from the longest chain. Since the attacker owns no unpublished blocks after this

action, it is optimal to capitulate to B0 after this action, where B0 has value VαPoS(B0) =

0. Let λ∗ = maxπ Rev(π, α) be the revenue of an optimal checkpoint recurrent, positive

recurrent strategy. Then, using Lemma B.9 (Bellman’s Principle of Optimality) we can use

this action to lower bound the value of state B′ as

VαPoS(B′) ≥ |TA(B
′)|(1− λ∗)− (− (|TA(B

′)| − 1)λ∗) = |TA(B
′)| − λ∗

Now, let’s upper bound the value of playing Wait. Let π be any checkpoint recurrent,

positive recurrent strategy which plays Wait at state B′. At best, after playing Wait at state

B′, a strategy may play optimally. Therefore, let’s characterize optimal play after playing
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Wait at state B′. For game (Xt)t≥0 with X0 = B′, let τ be defined as

τ1 = min{t ≥ 1 : Xt ∈ (A, xH)x∆}

τ2 = min{t ≥ 1 : Xt ∈ (A, xH)1∆}

τ = min{τ1, τ2}

That is, τ ≥ 1 is the earliest state following B′ such that the attacker once again has a lead of

x over all blocks > x+1 or has dropped to a lead of 1 over all blocks > x+1. By Conjecture

9.3, which states that an optimal strategy waits at all states (A, xH)y∆ for y /∈ {1, x} which

are subsequent to state (A, xH, 2A) but not subsequent to any state in (A, xH)(−1)∆, we

know that for all t < τ , an optimal strategy plays Wait at XHalf
t . Therefore, we have defined

τ such that it is the first time step where the attacker has a non-trivial choice over the action

they take. Now, we want to calculate the expected rewards conditioned on τ = τ1 and τ = τ2

as well as the probabilities Pr[τ = τ1] and Pr[τ = τ2].

First, we will consider the event that τ = τ1. There are actually two ways that we may

have τ = τ1. The first is if XHalf
1 ∈ (A, xH)(x + 1)∆. That is, consider the case that the

first block mined after B′ goes to the attacker. Then, clearly, τ = τ1 since the attacker may

not go from a lead of x+1 over blocks > x+1 to a lead of 1 over blocks > x+1 without first

having a lead of x over blocks > x + 1. Let E be the event that the first block mined after

B′ goes to the attacker. Then, Pr[τ = τ1 | E] = 1. We also want to calculate the expected

reward conditioned on τ = τ1 and E, which simplifies to just being conditioned on E. In

other words, we want to calculate the quantity

E[rλ∗(X0, X
Half
τ ) + VαPoS(XHalf

τ ) | X0 = B′, τ = τ1, E]

= E[rλ∗(X0, X
Half
τ ) + VαPoS(XHalf

τ ) | X0 = B′, E]

= E[rλ∗(X0, X
Half
τ ) | X0 = B′, E] + E[VαPoS(XHalf

τ ) | X0 = B′, E]
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= E[rλ∗(X1, X
Half
τ ) | X0 = B′, E] + E[VαPoS(XHalf

τ ) | X0 = B′, E]

where the last line follows because the attacker mines and withholds a block during the

first time step, conditioned on E. Then, since only the honest miner publishes between

X1 and XHalf
τ , the term E[rλ∗(X1, X

Half
τ ) | X0 = B′, E] just counts the expected number

of honest miner blocks mined between these states times −λ∗. But, this can be framed

differently as counting the expected number of decrements in a random walk where the

attacker starts with a lead of one block. Still more, the expected number of decrements in a

random walk where the attacker starts with a lead of one block is simply one greater than

the expected number of increments in a random walk where the attacker starts with a lead

of one block. Therefore, since we have used random walk calculations several times before,

we can calculate this as E[rλ∗(X1, X
Half
τ ) | X0 = B′, E] = −

(
( α
1−2α

) + 1
)
λ∗. The other term

here, E[VαPoS(XHalf
τ ) | X0 = B′, E], can be simplified using Claim I.5, since, conditioned

on E occurring, XHalf
τ is bound to satisfy the properties required by the claim. So, we can

write:

E[VαPoS(XHalf
τ ) | X0 = B′, E]

= E[VαPoS(B′) + |TA(X
Half
τ ) \ TA(B)| − |TA(B

′) \ TA(B)| | X0 = B′, E]

= VαPoS(B′) + E[|TA(X
Half
τ ) \ TA(B)| | X0 = B′, E]− |TA(B

′) \ TA(B)|

= VαPoS(B′) + E[|
(
TA(X

Half
τ ) \ TA(B

′)
)
∪ (TA(B

′) \ TA(B)) | | X0 = B′, E]− |TA(B
′) \ TA(B)|

= VαPoS(B′) + E[|TA(X
Half
τ ) \ TA(B

′)| | X0 = B′, E] + |TA(B
′) \ TA(B)| − |TA(B

′) \ TA(B)|

= VαPoS(B′) + E[|TA(X
Half
τ ) \ TA(B

′)| | X0 = B′, E]

But, E[|TA(X
Half
τ )\TA(B

′)| | X0 = B′, E] is just the block mined at X1 plus the attacker

blocks that were mined betweenX2 andXHalf
τ , where the expected number of attacker blocks

mined between X2 and XHalf
τ is the expected number of increments in a random walk where
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the attacker starts with a lead of one block, which is ( α
1−2α

). Therefore, putting everything

together, we have:

E[rλ∗(X0, X
Half
τ ) + VαPoS(XHalf

τ ) | X0 = B′, τ = τ1, E] = −
(
( α
1−2α

) + 1
)
λ∗ + VαPoS(B′) + ( α

1−2α
) + 1

= VαPoS(B′) + (1 + α
1−2α

)(1− λ∗)

Now, let’s consider the event that τ = τ1 conditioned on Ec. That is, lets consider

the event that τ = τ1 given that the first block mined after B′ goes to the honest miner.

But, conditioned on Ec, the event that τ = τ1 can be framed as the event that a random

walk starting at position x − 1 reaches an upper boundary at position x before reaching a

lower boundary at position 1. Equivalently, this is the event that a random walk starting at

position x−2 reaches an upper boundary at position x−1 before reaching a lower boundary

at position 1. From Lemma C.4, we can calculate the probability this event as

Pr[τ = τ1 | Ec] = Pr[ST = x− 1 | S0 = x− 2] =
(1−α

α
)x−2 − 1

(1−α
α

)x−1 − 1

Now, for the reward conditioned on τ = τ1 and Ec:

E[rλ∗(X0, X
Half
τ ) + VαPoS(XHalf

τ ) | X0 = B′, τ = τ1, E
c]

= E[rλ∗(X0, X
Half
τ ) + VαPoS(XHalf

τ ) | X0 = B′, τ = τ1, E
c]

= E[rλ∗(X0, X
Half
τ ) | X0 = B′, τ = τ1, E

c] + E[VαPoS(XHalf
τ ) | X0 = B′, τ = τ1, E

c]

= − λ∗ + E[rλ∗(X1, X
Half
τ ) | X0 = B′, τ = τ1, E

c] + E[VαPoS(XHalf
τ ) | X0 = B′, τ = τ1, E

c]

where the last line follows because the honest miner mines and publishes a block during the

first time step, conditioned on Ec. Then, since only the honest miner publishes between

X1 and XHalf
τ , the term E[rλ∗(X1, X

Half
τ ) | X0 = B′, τ = τ1, E

c] just counts the expected
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number of honest miner blocks mined between these states times −λ∗. But, this can be

framed differently as counting the expected number of decrements in a random walk starting

at position x−2 until it reaches position x−1, conditioned on the random walk reaching x−1

before 0. Still more, this quantity is exactly one less than the expected number of increments

in a random walk starting at position x − 2 until it reaches position x − 1, conditioned on

the random walk reaching x− 1 before 0. We can use Lemma C.7 to calculate this quantity

as

E[rλ∗(X1, X
Half
τ ) | X0 = B′, τ = τ1, E

c] =
(
E[T | S0 = x− 2, ST = x− 1] + (x− 1)− (x− 2)

)
/2− 1

=
(
E[T | S0 = x− 2, ST = x− 1] + 1

)
/2− 1

=
(
E[T | S0 = x− 2, ST = x− 1]− 1

)
/2

where

E[T | S0 = x− 2, ST = x− 1]

=
(2α− 1)−1

1− (1−α
α

)x−2

[
((x− 1)− (x− 2))((1−α

α
)x−2 + 1) + 2(x− 1)

(
(1−α

α
)x−2 − (1−α

α
)x−1

(1−α
α

)x−1 − 1

)]
=

(2α− 1)−1

1− (1−α
α

)x−2

[
((1−α

α
)x−2 + 1) + 2(x− 1)

(
(1−α

α
)x−2 − (1−α

α
)x−1

(1−α
α

)x−1 − 1

)]

The other term here, E[VαPoS(XHalf
τ ) | X0 = B′, τ = τ1, E

c], can be simplified using Claim

I.5, since, conditioned on τ = τ1, X
Half
τ is bound to satisfy the properties required by the

claim. So, we can write:

E[VαPoS(XHalf
τ ) | X0 = B′, τ = τ1, E

c]

= E[VαPoS(B′) + |TA(X
Half
τ ) \ TA(B)| − |TA(B

′) \ TA(B)| | X0 = B′, τ = τ1, E
c]
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= VαPoS(B′) + E[|TA(X
Half
τ ) \ TA(B)| | X0 = B′, τ = τ1, E

c]− |TA(B
′) \ TA(B)|

= VαPoS(B′) + E[|
(
TA(X

Half
τ ) \ TA(B

′)
)
∪ (TA(B

′) \ TA(B)) | | X0 = B′, τ = τ1, E
c]− |TA(B

′) \ TA(B)|

= VαPoS(B′) + E[|TA(X
Half
τ ) \ TA(B

′)| | X0 = B′, τ = τ1, E
c] + |TA(B

′) \ TA(B)| − |TA(B
′) \ TA(B)|

= VαPoS(B′) + E[|TA(X
Half
τ ) \ TA(B

′)| | X0 = B′, τ = τ1, E
c]

But, E[|TA(X
Half
τ )\TA(B

′)| | X0 = B′, τ = τ1, E
c] is just the expected number of attacker

blocks that were mined between X2 and XHalf
τ , where this is equal to the expected number

of increments in a random walk starting at position x − 2 until it reaches position x − 1,

conditioned on the random walk reaching x − 1 before 0. But, by way of calculating the

expected number of decrements, the number of increments was already calculated to be

(E[T | S0 = x− 2, ST = x− 1] + 1)/2. Therefore, putting everything together, we have:

E[rλ∗(X0, X
Half
τ ) + VαPoS(XHalf

τ ) | X0 = B′, τ = τ1, E
c]

= −
(
1 +

(
E[T | S0 = x− 2, ST = x− 1]− 1

)
/2
)
λ∗ + VαPoS(B′) + (E[T | S0 = x− 2, ST = x− 1] + 1)/2

= VαPoS(B′) + ((E[T | S0 = x− 2, ST = x− 1] + 1)/2)(1− λ∗)

Finally, let’s consider the event that τ = τ2. Clearly, this can only happen if Ec occurs.

That is, τ = τ2 only if the first block mined after B′ goes to the honest miner. But,

conditioned on Ec, the event that τ = τ1 can be framed as the event that a random walk

starting at position x − 1 reaches a lower boundary at position 1 before reaching an upper

boundary at position x. Equivalently, this is the event that a random walk starting at

position x− 2 reaches a lower boundary at position 0 before reaching an upper boundary at

position x− 1. From Lemma C.4, we can calculate the probability this event as

Pr[τ = τ2 | Ec] = Pr[ST = 0 | S0 = x− 2] =
(1−α

α
)x−1 − (1−α

α
)x−2

(1−α
α

)x−1 − 1
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Now, for the reward conditioned on τ = τ2 and Ec:

E[rλ∗(X0, X
Half
τ ) + VαPoS(XHalf

τ ) | X0 = B′, τ = τ2, E
c]

= E[rλ∗(X0, X
Half
τ ) + VαPoS(XHalf

τ ) | X0 = B′, τ = τ2, E
c]

= E[rλ∗(X0, X
Half
τ ) | X0 = B′, τ = τ2, E

c] + E[VαPoS(XHalf
τ ) | X0 = B′, τ = τ2, E

c]

= − λ∗ + E[rλ∗(X1, X
Half
τ ) | X0 = B′, τ = τ2, E

c] + E[VαPoS(XHalf
τ ) | X0 = B′, τ = τ2, E

c]

where the last line follows because the honest miner mines and publishes a block during the

first time step, conditioned on Ec. Then, since only the honest miner publishes between

X1 and XHalf
τ , the term E[rλ∗(X1, X

Half
τ ) | X0 = B′, τ = τ2, E

c] just counts the expected

number of honest miner blocks mined between these states times −λ∗. But, this can be

framed differently as counting the expected number of decrements in a random walk starting

at position x − 2 until it reaches position 0, conditioned on the random walk reaching 0

before x− 1. Still more, this quantity is exactly x− 2 greater than the expected number of

increments in a random walk starting at position x−2 until it reaches position 0, conditioned

on the random walk reaching 0 before x−1. We can use Lemma C.7 to calculate this quantity

as

E[rλ∗(X1, X
Half
τ ) | X0 = B′, τ = τ2, E

c] =
(
E[T | S0 = x− 2, ST = 0]− (x− 2)

)
/2 + (x− 2)

=
(
E[T | S0 = x− 2, ST = 0] + (x− 2)

)
/2

where

E[T | S0 = x− 2, ST = 0]

=
(2α− 1)−1

(1−α
α

)x−2 − (1−α
α

)x−1

[
(x− 2)((1−α

α
)x−2 + (1−α

α
)x−1) + 2(x− 1)

(
(1−α

α
)(x−1)+(x−2) − (1−α

α
)x−1

1− (1−α
α

)x−1

)]
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=
(2α− 1)−1

(1−α
α

)x−2 − (1−α
α

)x−1

[
(x− 2)((1−α

α
)x−2 + (1−α

α
)x−1) + 2(x− 1)

(
(1−α

α
)2x−3 − (1−α

α
)x−1

1− (1−α
α

)x−1

)]

The other term here, E[VαPoS(XHalf
τ ) | X0 = B′, τ = τ2, E

c], can be simplified to the following

since we know the action at state XHalf
τ is PublishPath(UA(B′)∩(x+1,∞), x+1) conditioned

on τ = τ2:

E[VαPoS(XHalf
τ ) | X0 = B′, τ = τ2, E

c]

= E[|TA(X
Half
τ ) \ TA(B)| | X0 = B′, τ = τ2, E

c]− λ∗

= E[|
(
TA(X

Half
τ ) \ TA(B

′)
)
∪ (TA(B

′) \ T (B)) | | X0 = B′, τ = τ2, E
c]− λ∗

= E[|TA(X
Half
τ ) \ TA(B

′)| | X0 = B′, τ = τ2, E
c] + |TA(B

′) \ TA(B)| − λ∗

But, E[|TA(X
Half
τ ) \ TA(B

′)| | X0 = B′, τ = τ2, E
c] is just the expected number of

attacker blocks that were mined between X2 and XHalf
τ , where this is equal to the expected

number of increments in a random walk starting at position x − 2 until it reaches position

0, conditioned on the random walk reaching 0 before x − 1. But, by way of calculating

the expected number of decrements, the number of increments was already calculated to be

(E[T | S0 = x− 2, ST = 0]− (x− 2))/2. Therefore, putting everything together, we have:

E[rλ∗(X0, X
Half
τ ) + VαPoS(XHalf

τ ) | X0 = B′, τ = τ2, E
c]

= −
(
1 +

(
E[T | S0 = x− 2, ST = 0] + (x− 2)

)
/2
)
λ∗

+ (E[T | S0 = x− 2, ST = 0]− (x− 2))/2 + |TA(B
′) \ TA(B)| − λ∗

Then, for strategy π which plays Wait at B, we can upper bound Vπ
αPoS,λ∗(B) by

Vπ
αPoS,λ∗(B) ≤ Pr[E]E[rλ∗(X0, X

Half
τ ) + VαPoS(XHalf

τ ) | X0 = B′, τ = τ1, E]

+ Pr[Ec]Pr[τ = τ1 | Ec]E[rλ∗(X0, X
Half
τ ) + VαPoS(XHalf

τ ) | X0 = B′, τ = τ1, E
c]
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+ Pr[Ec]Pr[τ = τ2 | Ec]E[rλ∗(X0, X
Half
τ ) + VαPoS(XHalf

τ ) | X0 = B′, τ = τ2, E
c]

Trivially, Pr[E] = α and Pr[Ec] = 1−α. All other quantities have already been reasoned

about. Now, let’s plug in values for x to make the rest of the proof more manageable.

First, consider x = 3. When we plug this in, we get

Vπ
αPoS,λ∗(B) ≤ α

(
VαPoS(B′) +

(
1 + α

1−2α

)
(1− λ∗)

)
+ (1− α)α (VαPoS(B′) + (1− λ∗))

+ (1− α)2 (−2λ∗ + |TA(B
′) \ TA(B)| − λ∗)

Recall that since we have assumed that α = αPoS, we have that αPoS = λ∗ = maxπ Rev(π, α).

Then, as solved by Mathematica [5], this quantity is strictly less than VαPoS(B′) when αPoS <

1/3, VαPoS(B′) ≥ |TA(B
′)| − λ∗, and |TA(B

′) \ TA(B)| ≥ 3 (where these conditions are not

necessarily tight). However, all of these conditions are indeed satisfied without further

knowledge of B′. It is well known that αPoS < 1/3, we have already derived VαPoS(B′) ≥

|TA(B
′)| − λ∗ from the action PublishPath(UA(B′), 0), and necessarily |TA(B

′) \ TA(B)| ≥ 3

if B′ ∈ B3∆. So, for x = 3, it is shown that waiting is not optimal. Recall, by Lemma 9.10,

since we have assumed Conjecture 9.7, it is either optimal to play PublishPath(UA(B′), 0) or

Wait at B′. But, we have just shown that it is not optimal to play Wait. Therefore it must

be optimal to play PublishPath(UA(B′), 0), and thus the proof is complete for x = 3.

Now, let’s consider x = 4. When we plug this in, we get:

Vπ
αPoS,λ∗(B) ≤ α

(
VαPoS(B′) +

(
1 + α

1−2α

)
(1− λ∗)

)
+ (1− α)( α

1−α+α2 )
(
VαPoS(B′) +

(
(1+α−α2

1−α+α2 + 1)/2
)
(1− λ∗)

)
+ (1− α)(1−2α+α2

1−α+α2 )
(
−(1 + ( 2

1−α+α2 + 2)/2)λ∗ + ( 2
1−α+α2 − 2)/2 + |TA(B

′) \ TA(B)| − λ∗)
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Once again, via Mathematica [5], this can be shown to be strictly less than VαPoS(B′) for

αPoS < 1/3, VαPoS(B′) ≥ |TA(B
′)| − λ∗, and |TA(B

′) \ TA(B)| ≥ 4 (where these conditions

are not necessarily tight), all of which we know to be true. So, for x = 4, it is shown that

waiting is not optimal. Recall, by Lemma 9.10, since we have assumed Conjecture 9.7, it is

either optimal to play PublishPath(UA(B′), 0) or Wait at B′. But, we have just shown that

it is not optimal to play Wait. Therefore it must be optimal to play PublishPath(UA(B′), 0),

and thus the proof is complete for x = 4.

Therefore, since we have shown the claim for both x = 3 and x = 4, the proof is

complete.
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J Omitted Proofs from Section 10

Claim J.1. If an optimal structured strategy takes some action PublishPath(Q, v) at a state

B which is or is subsequent to (A, xH,A,H,A) for x ≥ 2 with Tree(B) = (V (B), E(B))

such that 1 ∈ Q, then x+ 4 ∈ Q or x+ 4 ∈ V (B).

Proof. The proof is by contradiction. Suppose not. That is, suppose an optimal struc-

tured strategy takes some action PublishPath(Q, v) at state B which is or is subsequent to

(A, xH,A,H,A) for x ≥ 2 with Tree(B) = (V (B), E(B)) such that 1 ∈ Q but x + 4 /∈ Q

and x+ 4 /∈ V (B).

Note that block 0 is the only block that block 1 may be published on, or v = 0 such

that this action is really PublishPath(Q, 0). Additionally, by the fact that the strategy is

orderly, we can further rewrite this action as PublishPath(min(|Q|) (UA(B) ∪ (0,∞)
)
, 0), or

just PublishPath(min(|Q|) UA(B), 0). Also note that, since block 1 can only reach a height of

1, the number of blocks published must be |Q| ≥ h(C(B)) + 1 ≥ (x + 1) + 1 ≥ 4, else this

contradicts the fact that the strategy is timeserving.

Now, if x + 4 /∈ Q and x + 4 /∈ V (B), we know that x + 4 ∈ UA(B). Furthermore, since

blocks are monotonically increasing, the miner will only ever own two blocks < x+4, which

are block 1 and block x+2. So, there can be at most two unpublished blocks less than x+4

at B. Then, this means that x + 4 ∈ min(4) UA(B) ⊆ min(|Q|) UA(B) = Q. But, this is a

contradiction to x + 4 /∈ Q. Therefore, for an action which publishes block 1, it cannot be

the case that both x+ 4 /∈ Q and x+ 4 /∈ V (B) and so the proof is complete.

Claim J.2. If an optimal structured strategy takes some action PublishPath(Q, v) at a state

B which is or is subsequent to (A, xH,A,H,A) for x ≥ 2 with Tree(B) = (V (B), E(B))

such that x+ 2 ∈ Q, then x+ 4 ∈ Q or x+ 4 ∈ V (B).

Proof. The proof is very similar to the proof of Claim J.1, though we will write it in full for

completeness.
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The proof is by contradiction. Suppose not. That is, suppose an optimal structured strat-

egy takes some action PublishPath(Q, v) at stateB which is or is subsequent to (A, xH,A,H,A)

for x ≥ 2 withTree(B) = (V (B), E(B)) such that x+2 ∈ Q but x+4 /∈ Q and x+4 /∈ V (B).

Note that in order for this to be a valid publish action, v < x+4. Additionally, by the fact

that the strategy is orderly, we can further rewrite this action as PublishPath(min(|Q|) (UA(B)∪

(v,∞)
)
, v). Also note that, since block x + 2 can only reach a height of x, the number of

blocks published must be |Q| ≥ h(C(B)) + 1− x ≥ (x+ 1) + 1− x = 2, else this contradicts

the fact that the strategy is timeserving.

Now, if x + 4 /∈ Q and x + 4 /∈ V (B), we know that x + 4 ∈ UA(B). Furthermore, since

blocks are monotonically increasing, the miner will only ever own two blocks < x+4, which

are block 1 and block x+2. So, there can be at most two unpublished blocks less than x+4

at B. Then, this means that x + 4 ∈ min(2) UA(B) ⊆ min(|Q|) UA(B) = Q. But, this is a

contradiction to x+ 4 /∈ Q. Therefore, for an action which publishes block x+ 2, it cannot

be the case that both x+ 4 /∈ Q and x+ 4 /∈ V (B) and so the proof is complete.

Claim J.3. If an optimal structured strategy at a state B which is or is subsequent to

(A, xH,A,H,A) for x ≥ 2 takes some action PublishPath(Q, x + 3) where x + 4 ∈ Q, then

checkpoint P1 has not yet been established by state B.

Proof. First, there cannot be a checkpoint at height > h(x + 3) because these blocks are

forked by this publish action, which contradicts the fact that this is an optimal structured

strategy.

Next, the attacker cannot own any blocks at heights ≤ h(x+ 3). If they had taken some

timeserving publish action to insert a block into the longest path at some height ≤ h(x+3),

then they would have necessarily forked block x+3. Then, the action PublishPath(Q, x+3)

would be publishing on a block not in the longest path, but this contradicts the fact that

this is an optimal structured strategy.
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Also, since x + 4 is the minimum element in Q since no other smaller block may be

published on x+ 3, we know that 1 /∈ Q. Then, by Claim J.1, since x+ 4 has not yet been

published at B, then 1 has not yet been published at B, or {1} ⊂ UA(B).

So, if the attacker owns no blocks in the longest path at height ≤ h(x + 3) but owns

block 1 which is unpublished, then for any block v ≥ 2 such that v ∈ A(C(B)) at height

≤ h(x+ 3), it will be the case that

|A(C(B)) ∩ (P0, v] ∩ TA(B)| = 0 < 1 = |{1}| ≤ |UA(B) ∩ (P0, v]|

, and so v fails the definition of a checkpoint, which completes the proof.

Claim J.4. If an optimal structured strategy at a state B which is or is subsequent to

(A, xH,A,H,A) for x ≥ 2 takes some action PublishPath(Q, x + 3) where x + 4 ∈ Q, then

Q = {x+ 4}.

Proof. The proof is by contradiction. Suppose not. That is, suppose an optimal structured

strategy at a state B which is or is subsequent to (A, xH,A,H,A) for x ≥ 2 takes some

action PublishPath(Q, x+ 3) where x+ 4 ∈ Q, but Q ̸= {x+ 4}.

Clearly, x+4 is the minimum element in Q since no other smaller block may be published

on x + 3. Then, we know that 1, x + 2 /∈ Q. So, by Claim J.1 and Claim J.2, since

x + 4 has not yet been published at B, then 1, x + 2 have not yet been published at B, or

{1, x + 2} = UA(B) ∪ (0, x + 4) ⊂ UA(B). Furthermore, by Claim J.3, the first checkpoint

P1 cannot have yet been established.

Then, let q > x+4 be the second smallest member of Q. By the fact that the strategy is

orderly, q is the second smallest unpublished block > x+3. So, {x+4, q} = UA(B)∪[x+4, q].

Therefore, at stateB′ immediately following this publish action atB, block q is a potential

checkpoint since

• q > P0 = 0
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• q ∈ A(C(B′)) by the fact that the strategy is timeserving

• |A(C(B′)) ∩ (0, q] ∩ TA(B
′)| = 2 ≥ 2 = |{1, x+ 2}| = |UA(B′) ∩ (0, q]|

. Furthermore, block x+ 4 is not a potential checkpoint since

|A(C(B′)) ∩ (0, x+ 4] ∩ TA(B
′)| = 1 < 2 = |{1, x+ 2}| = |UA(B′) ∩ (0, x+ 4]|

and no blocks at height ≤ h(x+3) may be a checkpoint for the same reasoning described in

the proof of Claim J.3. Therefore, q is the minimum potential first checkpoint and so P1 = q.

Then, since q becomes a checkpoint, it reaches finality with respect to the optimal structured

strategy. However, in this case, we reach a contradiction since the optimal structured strategy

is thrifty and yet block x + 2, which would otherwise be forgotten, can additionally be

published at B to yield strictly greater reward. So, we conclude that q must not exist, or in

other words Q = {x+ 4}, and thus completes the proof.

To recap the work done in the previous claims, we have basically reduced the problem

of showing that an optimal structured strategy never publishes block x + 4 on top of block

x+3 to showing that an optimal structured strategy never takes the action PublishPath({x+

4}, x+ 3).

Furthermore, consider that once the honest miner mines a block from (A, xH,A,H,A),

the action PublishPath({x+4}, x+3) is immediately ruled out because it is no longer time-

serving since block x+ 4 doesn’t reach height greater than the longest chain by this action.

Also, if the attacker takes any timeserving publish action before playing PublishPath({x +

4}, x + 3), this action is again ruled. So, all that is left to show is that the attacker never

takes action PublishPath({x+ 4}, x+ 3) at state B′ which is state (A, xH,A,H,A) followed

by the attacker mining and withholding zero or more blocks.

We complete the proof that an optimal strategy does not publish block x + 4 on block
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Figure 30: The state that follows publish action PublishPath({6}, 5) at state (A, 2H,A,H,A).

x+3 by considering three cases on how many blocks that the attacker mines and withholds

following state (A, xH,A,H,A):

Claim J.5. At state (A, xH,A,H,A), it is not optimal to play PublishPath({x+ 4}, x+ 3).

Proof. Let B = (A, xH,A,H,A). We will show that some action strictly dominates the

action PublishPath({x+ 4}, x+ 3), which implies the claim.

Since the action PublishPath({x+ 4}, x+ 3) publishes one attacker block to the longest

chain and does not fork any blocks, the immediate reward of this action is 1 − λ∗. Let B′

be the state following action PublishPath({x+4}, x+3), as depicted in Figure 30 for x = 2.

Now, we will derive an upper bound to Vα(B′), which will in turn upper bound the value

to playing the action PublishPath({x+ 4}, x+ 3) since any strategy which plays this action

can at best play optimally from B′. Towards this purpose, we will apply Corollary 6.3 with

N = 2 and sequence (0, 1, x). This sequence induces the sequence of states (B′
0, B

′
1, B

′
2).

By the corollary statement, B′
0 = B′. From state B′, the attacker needs a lead of at least

x + 1 blocks to ever be able to publish block 1. So, by a familiar coupling with random

walks, the probability of ever publishing block 1 from B′ is at most ( α
1−α

)x+1. But, since the

attacker owns the block in the longest chain at height 1 if and only if the attacker publishes

block 1, this tells us that Pr[H1(Xτ ) ∈ TA(Xτ ) | X0 = B′] ≤ ( α
1−α

)x+1.

Next, B′
1 which is the 1-capitulation of B′ is some state where the attacker’s first unpub-

lished block follows x − 1 honest miner blocks in the longest chain. Therefore, these x − 1
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honest miner blocks in the longest chain must all be checkpoints, such that the attacker has

a zero probability of ever forking them and thus a zero probability of ever owning the blocks

in the longest chain at heights {1, ..., x − 1}. In other words, for all j ∈ {1, ..., x − 1}, we

know that Pr[Hj(Xτ ) ∈ TA(Xτ ) | X0 = B′
1] = 0.

Finally, B′
2, which is the x-capitulation of B′ is the following:

B′
2 = ({2, 3}, {3→ 2→ 0}, {1}, ∅, {1, 3}, {2})

By inspection, we see that rλ∗(B0, B
′
2) = −λ∗ + (1 − λ∗) = 1 − 2λ∗ since one honest miner

block and one attacker block are published in the longest chain at B′
2. Additionally, since

block 3 establishes a checkpoint and no blocks can reach height greater than h(3) = 2, an

optimal strategy capitulates to B0 at this state, or Vα(B′
2) = Vα(B0) = 0.

As one final piece, consider rλ∗(B0, B
′) = −(x + 1)λ∗ + (1 − λ∗) since there are x + 1

honest miner blocks and 1 − λ∗ attacker block in the longest chain at B′. Altogether, the

corollary gives us:

Vα(B′) ≤ Vα(B′
N) + rλ∗(B0, B

′
N)− rλ∗(B0, B

′)− aNλ
∗ +

N∑
i=1

ai−ai−1∑
j=1

Pr[Hj(Xτ ) ∈ TA(Xτ ) | X0 = B′
i−1]

= Vα(B′
2) + rλ∗(B0, B

′
2)− rλ∗(B0, B

′)− xλ∗ +
2∑

i=1

ai−ai−1∑
j=1

Pr[Hj(Xτ ) ∈ TA(Xτ ) | X0 = B′
i−1]

= (1− 2λ∗)− xλ∗ + (x+ 1)λ∗ − (1− λ∗)

+
1∑

j=1

Pr[Hj(Xτ ) ∈ TA(Xτ ) | X0 = B′]

+
x−1∑
j=1

Pr[Hj(Xτ ) ∈ TA(Xτ ) | X0 = B′
1]

≤ (1− 2λ∗)− xλ∗ + (x+ 1)λ∗ − (1− λ∗) + ( α
1−α

)x+1

= ( α
1−α

)x+1
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Therefore, for a strategy π which plays PublishPath({x+ 4}, x+ 3) at B, we have

Vπ
α,λ∗(B) ≤ 1− λ∗ + ( α

1−α
)x+1

However, we know that Vα(B) is lower bounded by

Vα(B) ≥ 2− λ∗

since a strategy may play PublishPath({x + 2, x + 4}, x + 1) and capitulate to B0 from B.

But, since ( α
1−α

)x+1 < 1 for all α < 1/2, we clearly have

Vπ
α,λ∗(B) ≤ 1− λ∗ + ( α

1−α
)x+1 < 2− λ∗ ≤ Vα(B)

So, for any values of 0 < α < 1/2, α < λ∗, it cannot be optimal to play PublishPath({x +

4}, x+ 3) and thus completes the proof.

Claim J.6. At state (A, xH,A,H, 2A), it is not optimal to play PublishPath({x+4}, x+3).

Proof. Let B = (A, xH,A,H, 2A). The proof starts off the same as the proof of Claim J.5

except that the probability of ever publishing block 1 is ( α
1−α

)x instead of ( α
1−α

)x+1 due to

the additional attacker block. Also, the attacker owns one block exceeding the checkpoint at

state B′
2. So, we have that Vα(B′

2) = Vα(B1,0) = 1− λ∗. Altogether, the corollary gives us:

Vα(B′) ≤ Vα(B′
N) + rλ∗(B0, B

′
N)− rλ∗(B0, B

′)− aNλ
∗ +

N∑
i=1

ai−ai−1∑
j=1

Pr[Hj(Xτ ) ∈ TA(Xτ ) | X0 = B′
i−1]

= Vα(B′
2) + rλ∗(B0, B

′
2)− rλ∗(B0, B

′)− xλ∗ +
2∑

i=1

ai−ai−1∑
j=1

Pr[Hj(Xτ ) ∈ TA(Xτ ) | X0 = B′
i−1]

= 1− λ∗ + (1− 2λ∗)− xλ∗ + (x+ 1)λ∗ − (1− λ∗)
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+
1∑

j=1

Pr[Hj(Xτ ) ∈ TA(Xτ ) | X0 = B′]

+
x−1∑
j=1

Pr[Hj(Xτ ) ∈ TA(Xτ ) | X0 = B′
1]

≤ 1− λ∗ + (1− 2λ∗)− xλ∗ + (x+ 1)λ∗ − (1− λ∗) + ( α
1−α

)x

= 1− λ∗ + ( α
1−α

)x

Therefore, for a strategy π which plays PublishPath({x+ 4}, x+ 3) at B, we have

Vπ
α,λ∗(B) ≤ 2− 2λ∗ + ( α

1−α
)x

However, we know that Vα(B) is lower bounded by

Vα(B) ≥ 2− λ∗ + 1− λ∗ = 3− 2λ∗

since a strategy may play PublishPath({x+ 2, x+ 4}, x+ 1) and capitulate to B1,0 from B.

But, since ( α
1−α

)x < 1 for all α < 1/2, we clearly have

Vπ
α,λ∗(B) ≤ 2− 2λ∗ + ( α

1−α
)x < 3− 2λ∗ ≤ Vα(B)

So, for any values of 0 < α < 1/2, α < λ∗, it cannot be optimal to play PublishPath({x +

4}, x+ 3) and thus completes the proof.

Claim J.7. At state (A, xH,A,H, (k + 1)A) for k ≥ 2, an optimal strategy does not play

PublishPath({x+ 4}, x+ 3).

Proof. Let B = (A, xH,A,H, (k+1)A) for k ≥ 2. The proof starts off the same as the proof

of Claim J.5 except that the probability of ever publishing block 1 is ≤ 1 instead of ( α
1−α

)x+1

due to the additional attacker blocks. Also, the attacker owns k ≥ 2 blocks exceeding the
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checkpoint at state B′
2. So, we have that Vα(B′

2) = Vα(Bk,0) =
(
k + (k − 1)( α

1−2α
)
)
(1− λ∗).

Altogether, the corollary gives us:

Vα(B′) ≤ Vα(B′
N) + rλ∗(B0, B

′
N)− rλ∗(B0, B

′)− aNλ
∗ +

N∑
i=1

ai−ai−1∑
j=1

Pr[Hj(Xτ ) ∈ TA(Xτ ) | X0 = B′
i−1]

= Vα(B′
2) + rλ∗(B0, B

′
2)− rλ∗(B0, B

′)− xλ∗ +
2∑

i=1

ai−ai−1∑
j=1

Pr[Hj(Xτ ) ∈ TA(Xτ ) | X0 = B′
i−1]

=
(
k + (k − 1)( α

1−2α
)
)
(1− λ∗) + (1− 2λ∗)− xλ∗ + (x+ 1)λ∗ − (1− λ∗)

+
1∑

j=1

Pr[Hj(Xτ ) ∈ TA(Xτ ) | X0 = B′]

+
x−1∑
j=1

Pr[Hj(Xτ ) ∈ TA(Xτ ) | X0 = B′
1]

≤
(
k + (k − 1)( α

1−2α
)
)
(1− λ∗) + (1− 2λ∗)− xλ∗ + (x+ 1)λ∗ − (1− λ∗) + 1

=
(
k + (k − 1)( α

1−2α
)
)
(1− λ∗) + 1

Therefore, for a strategy π which plays PublishPath({x+ 4}, x+ 3) at B, we have

Vπ
α,λ∗(B) ≤ 1− λ∗ +

(
k + (k − 1)( α

1−2α
)
)
(1− λ∗) + 1 = 2− λ∗ +

(
k + (k − 1)( α

1−2α
)
)
(1− λ∗)

However, we know that Vα(B) is lower bounded by

Vα(B) ≥ 2− λ∗ +
(
k + (k − 1)( α

1−2α
)
)
(1− λ∗)

since a strategy may play PublishPath({x+ 2, x+ 4}, x+ 1) and capitulate to Bk,0 from B.

So, we have

Vπ
α,λ∗(B) ≤ 2− λ∗ +

(
k + (k − 1)( α

1−2α
)
)
(1− λ∗) ≤ Vα(B)
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Then, an optimal strategy does not play PublishPath({x+4}, x+3) and thus completes the

proof.

Therefore, the preceding claims suffice to show that an optimal strategy never takes the

action PublishPath({x+4}, x+3). This makes the proof of Theorem 10.1 extremely simple:

Proof of Theorem 10.1. Let B = (A, xH,A,H,A) for x ∈ {2, 3, 4}. By Claim J.4, if an

optimal structured strategy ever takes action PublishPath(Q, x + 3) from state B where

x + 4 ∈ Q, then this action is PublishPath({x + 4}, x + 3). Furthermore, as soon as some

miner takes a timeserving publish action, this action is itself no longer timeserving. So, this

action is only available at state B or at a state subsequent to B where the attacker has

mined and withheld all blocks since B. But, the union of Claim J.5, J.6, and J.7 tells us

that PublishPath({x+4}, x+3) is always weakly dominated by some other action at all such

states. Therefore, there is an optimal strategy which never publishes block x + 4 on block

x+ 3.

Then, since block x+3 is not a checkpoint and there is an optimal strategy which never

publishes block x + 4 on block x + 3 from state B, for state B′ = (A, xH, 2A,H) which is

identical to state B except for blocks x + 3 and x + 4 swapped, Theorem 7.3 tells us that

VαPoS(B) = VαPoS(B′). Now, we already know that VαPoS(B′) = 2 − λ∗ by Lemma 9.11, so

we have VαPoS(B) = VαPoS(B′) = 2− λ∗.

In summary, an optimal action at B is one which achieves value VαPoS(B) = 2−λ∗. But,

the action PublishPath({x + 2, x + 4}, x + 1) at B followed by a capitulation to B0 exactly

achieves this value since it publishes two attacker blocks to remove one honest miner block.

Therefore, this action must be optimal for mining strength αPoS, and thus completes the

proof.

Proof of Lemma 10.2. Recall the proof of Lemma 9.12. Let the setup be the same except
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we now use the partition

(A,H,A), (A, 2H, 2A), (A, 2H,A,H,A), (A, 2H,A, 2H), (A, 3H, 3A), (A, 3H, 2A,H), (A, 3H,A,H,A),

(A, 3H,A, 2H), (A, 4H, 3A), (A, 4H, 2A,H), (A, 4H,A,H,A), (A, 4H,A, 2H), (A, 5H)

That is, for each sequence of the form (A, xH,A,H), we have expanded this into the se-

quences (A, xH,A,H,A) and (A, xH,A,H,H). Indeed, we are able to do this because there

is no timeserving publish action at states of the form (A, xH,A,H). So, let’s calculate

Pr[X|B| = B] and Pr[H1(Xτ ) ∈ TA(Xτ ) | X2 = B1,1, X|B| = B] for each state that we have

not already analyzed:

• (A, 2H,A,H,A): By Theorem 10.1, an optimal strategy publishes all blocks except

for block 1 at this state and capitulates to B0. So, Pr[H1(Xτ ) ∈ TA(Xτ ) | X2 =

B1,1, X|(A,2H,A,H,A)| = (A, 2H,A,H,A)] = 0.

• (A, 2H,A, 2H): This state is three honest miner blocks and one attacker block past

B1,1, so Pr[X|(A,2H,A,2H)| = (A, 2H,A, 2H)] = α(1 − α)3. Furthermore, block 1 is

at a deficit of 3 blocks to ever being published, so Pr[H1(Xτ ) ∈ TA(Xτ ) | X2 =

B1,1, X|(A,2H,A,2H)| = (A, 2H,A, 2H)] ≤ ( α
1−α

)3.

• (A, 3H,A,H,A): By Theorem 10.1, an optimal strategy publishes all blocks except

for block 1 at this state and capitulates to B0. So, Pr[H1(Xτ ) ∈ TA(Xτ ) | X2 =

B1,1, X|(A,3H,A,H,A)| = (A, 3H,A,H,A)] = 0.

• (A, 3H,A, 2H): This state is four honest miner blocks and one attacker block past B1,1,

so Pr[X|(A,3H,A,2H)| = (A, 3H,A, 2H)] = α(1−α)4. Furthermore, block 1 is at a deficit of

4 blocks to ever being published, so Pr[H1(Xτ ) ∈ TA(Xτ ) | X2 = B1,1, X|(A,3H,A,2H)| =

(A, 3H,A, 2H)] ≤ ( α
1−α

)4.
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• (A, 4H,A,H,A): By Theorem 10.1, an optimal strategy publishes all blocks except

for block 1 at this state and capitulates to B0. So, Pr[H1(Xτ ) ∈ TA(Xτ ) | X2 =

B1,1, X|(A,4H,A,H,A)| = (A, 4H,A,H,A)] = 0.

• (A, 4H,A, 2H): This state is five honest miner blocks and one attacker block past B1,1,

so Pr[X|(A,4H,A,2H)| = (A, 4H,A, 2H)] = α(1−α)5. Furthermore, block 1 is at a deficit of

5 blocks to ever being published, so Pr[H1(Xτ ) ∈ TA(Xτ ) | X2 = B1,1, X|(A,4H,A,2H)| =

(A, 4H,A, 2H)] ≤ ( α
1−α

)5.

Plugging this in, we get:

Pr[H1(Xτ ) ∈ TA(Xτ ) | X2 = B1,1] ≤ α + α2(1− α) + α(1− α)3( α
1−α

)3 + α3(1− α)2

+ α(1− α)4( α
1−α

)4 + α3(1− α)3( α
1−α

) + α(1− α)5( α
1−α

)5

But, this simplifies to

VαPoS(B1,1) ≤ α + α2 + 2α6

which completes the proof.

Proof of Theorem 10.3. From the proof of Theorem 8.6, recall that

VαPoS(B1,1) =
1−3αPoS+(αPoS)2

2αPoS−1

So, we can plug in the bound due to Lemma 10.2 to get

VαPoS(B1,1) =
1−3αPoS+(αPoS)2

1−2αPoS ≤ αPoS + (αPoS)2 + 2(αPoS)6

which we can easily solve with Mathematica [5] to find αPoS ≥ 0.315111.
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Proof of Lemma 10.4. Recall the proof of Lemma 9.12. Let the setup be the same except

we now use the partition

(A,H,A), (A, 2H, 2A), (A, 2H,A,H,A), (A, 2H,A, 2H), (A, 3H, 2A)

(A, 3H,A,H,A), (A, 3H,A, 2H), (A, 4H, 2A), (A, 4H,A,H,A), (A, 4H,A, 2H), (A, 5H)

That is, we are using the sequences (A, xH, 2A) for x ∈ {3, 4} rather than expanding them

into (A, xH, 3A) and (A, xH, 2A,H). All sequences that appear here have already been ana-

lyzed. In particular, our calculation with (A, 3H, 2A) and (A, 4H, 2A) depend on Conjecture

9.3. Therefore, we have

Pr[H1(Xτ ) ∈ TA(Xτ ) | X2 = B1,1] ≤ α + α2(1− α) + α(1− α)3( α
1−α

)3 + α3(1− α)2

+ α(1− α)4( α
1−α

)4 + α2(1− α)3( α2

1−α+α2 ) + α(1− α)5( α
1−α

)5

But, this simplifies to

VαPoS(B1,1) ≤ α+α4+α6+α8

1−α+α2

which completes the proof.

Proof of Theorem 10.5. From the proof of Theorem 8.6, recall that

VαPoS(B1,1) =
1−3αPoS+(αPoS)2

2αPoS−1

So, we can plug in the bound due to Lemma 10.4 to get

VαPoS(B1,1) =
1−3αPoS+(αPoS)2

1−2αPoS ≤ αPoS+(αPoS)4+(αPoS)6+(αPoS)8

1−αPoS+(αPoS)2
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which we can easily solve with Mathematica [5] to find αPoS ≥ 0.315212.
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K Omitted Proofs from Section 11

Proof of Theorem 11.1. Let state B = (A, 2H,A, xH, xA) for x ≥ 3 and let (Xt)t≥0 be a

mining game starting at X0 = B. Consider the strategy π̃ at state B which plays Wait until

the first time step τ such that

τ1 = min{t ≥ 1 | |TA(Xt)| = |TH(Xt)|+ 1}

τ2 = min{t ≥ 1 | |TA(Xt) \ TA ((A, 2H,A, xH)) | = |TH(Xt) \ TH ((A, 2H,A, xH)) |+ 1}

τ = min{τ1, τ2}

and at time step τ , plays

• PublishPath(TA(Xτ ), 0) if τ = τ1,

• or, PublishPath(TA(Xτ ) \ TA ((A, 2H,A, xH)) , x+ 4) if τ = τ2,

and capitulates to B0. In short, strategy π̃ tries to recover block 1 without risking blocks

> x+4. The expected value of π̃ at state B for mining strength α and λ∗ = maxπ Rev(π, α)

is

V π̃
α,λ∗(B) = Pr[τ = τ1]E[rλ∗(B,Xτ ) + V π̃

α,λ∗(B) | τ = τ1]

+ Pr[τ = τ2]E[rλ∗(B,Xτ ) + V π̃
α,λ∗(B) | τ = τ2]

= Pr[τ = τ1]E[rλ∗(B,Xτ ) | τ = τ1] + Pr[τ = τ2]E[rλ∗(B,Xτ ) | τ = τ2]

where the second line is because the strategy capitulates to B0 after the publish action. By

a coupling with random walks as has been done several times before, Lemma C.4 gives us

Pr[τ = τ1] =
(1−α

α
)x−1 − 1

(1−α
α

)x − 1
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Pr[τ = τ2] =
(1−α

α
)x − (1−α

α
)x−1

(1−α
α

)x − 1

Next, if τ = τ1, the strategy π̃ takes an action at XHalf
τ which publishes all x+2 attacker

blocks owned at state B plus any attacker blocks mined between B and Xτ . Furthermore,

this action inserts all these blocks into the longest path while forking all honest miner blocks

from the longest path. Therefore, at Xτ there will be x + 2 + |TA(Xt) \ TA(B)| attacker

blocks in the longest path and no honest miner blocks in the longest path. Recall that at

state B, there are x + 2 honest miner blocks in the longest path and no attacker blocks in

the longest path. Therefore, rλ∗(B,Xτ ) is

rλ∗(B,Xτ ) = (x+ 2 + |TA(Xτ ) \ TA(B)|)(1− λ∗)− (x+ 2)(−λ∗)

= x+ 2 + |TA(Xτ ) \ TA(B)|(1− λ∗)

Then, E[|TA(Xτ ) \ TA(B)| | τ = τ1] can be calculated by a coupling with a random walk.

Specifically, this quantity is the expected number of increments in a random walk starting

at position x− 1 with boundaries {0, x} conditioned on the random walk hitting the upper

boundary before the lower boundary. This is exactly calculated by Lemma C.7 to be

E[|TA(Xτ ) \ TA(B)| | τ = τ1]

=

(
(2α− 1)−1

1− (1−α
α

)x−1

[
(x− (x− 1))((1−α

α
)x−1 + 1) + 2x

(
(1−α

α
)x−1 − (1−α

α
)x

(1−α
α

)x − 1

)]
+ x− (x− 1)

)
/2

=

(
(2α− 1)−1

1− (1−α
α

)x−1

[
((1−α

α
)x−1 + 1) + 2x

(
(1−α

α
)x−1 − (1−α

α
)x

(1−α
α

)x − 1

)]
+ 1

)
/2

Altogether, we have

E[rλ∗(B,Xτ ) | τ = τ1]
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= x+ 2 +
1

2

(
(2α− 1)−1

1− (1−α
α

)x−1

[
((1−α

α
)x−1 + 1) + 2x

(
(1−α

α
)x−1 − (1−α

α
)x

(1−α
α

)x − 1

)]
+ 1

)
(1− λ∗)

Next, if τ = τ2, the strategy π̃ takes an action at XHalf
τ which publishes the x attacker

blocks > x + 4 owned at state B plus any attacker blocks mined between B and Xτ . Fur-

thermore, this action inserts all these blocks into the longest path while forking all honest

miner blocks from the longest path at heights greater than x+2. Therefore, at Xτ there will

be x+ |TA(Xt) \TA(B)| attacker blocks in the longest path and x+2 honest miner blocks in

the longest path. Recall that at state B, there are x+ 2 honest miner blocks in the longest

path and no attacker blocks in the longest path. Therefore, rλ∗(B,Xτ ) is

rλ∗(B,Xτ ) = (x+ |TA(Xτ ) \ TA(B)|)(1− λ∗) + (x+ 2)(−λ∗)− (x+ 2)(−λ∗)

= (x+ |TA(Xτ ) \ TA(B)|)(1− λ∗)

Then, E[|TA(Xτ ) \ TA(B)| | τ = τ2] can be calculated by a coupling with a random walk.

Specifically, this quantity is the expected number of increments in a random walk starting

at position x − 1 with boundaries {0, x} conditioned on the random walk hitting the lower

boundary before the upper boundary. This is exactly calculated by Lemma C.7 to be

E[|TA(Xτ ) \ TA(B)| | τ = τ2]

=

(
(2α− 1)−1

(1−α
α

)x−1 − (1−α
α

)x

[
(x− 1)((1−α

α
)x−1 + (1−α

α
)x) + 2x

(
(1−α

α
)x+(x−1) − (1−α

α
)x

1− (1−α
α

)x

)]
− (x− 1)

)
/2

=

(
(2α− 1)−1

(1−α
α

)x−1 − (1−α
α

)x

[
(x− 1)((1−α

α
)x−1 + (1−α

α
)x) + 2x

(
(1−α

α
)2x−1 − (1−α

α
)x

1− (1−α
α

)x

)]
− (x− 1)

)
/2

Altogether, we have

E[rλ∗(B,Xτ ) | τ = τ2]
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= x(1− λ∗)

+
1

2

(
(2α− 1)−1

(1−α
α

)x−1 − (1−α
α

)x

[
(x− 1)((1−α

α
)x−1 + (1−α

α
)x) + 2x

(
(1−α

α
)2x−1 − (1−α

α
)x

1− (1−α
α

)x

)]
− (x− 1)

)
(1− λ∗)

Now, assume that an optimal strategy π∗ at state B plays action PublishPath(UA(B) ∩

(3,∞), 3) and capitulates to B0. We find that the value of π∗ at state B for mining strength

α and λ∗ = Rev(π∗, α) is

Vπ∗

α,λ∗ = (x+ 1)(1− λ∗)− x(−λ∗) = x+ 1− λ∗

since x+1 attacker blocks enter the longest path and x honest miner blocks are forked from

the longest path. To derive a contradiction and conclude that π∗ cannot be optimal, we

want to show that

Vπ
α,λ∗(B) > V π̃

α,λ∗(B),

at which point we can use Lemma B.9. But, by plugging the derived quantities into Mathe-

matica [5], this inequality is true over the known range of αPoS when x ≥ 3, which completes

the proof.
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L Notation
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Symbol(s) Domain Usage

A - Relating to the attacker.
H - Relating to the honest miner.
t N+ Round/time/time step in an execution of

the game.
Γt {A,H} Random variable which is the miner during

round t, all such Γt are independently and
identically distributed.

Γ {A,H}∞ Random sequence of miners in an execu-
tion of the game.

γt {A,H} Realization of Γt, only available once round
t has started.

α [0, 1] Mining strength of the attacker; probabil-
ity with which the attacker mines any given
block, or Pr[Γt = A] = α.

a, b, q, x N0 Block created during a round, or the gen-
esis block.

TA(t) P([t]) Rounds up to round t where the attacker
has mined a block. Equivalently, all blocks
up to block t owned by the attacker.

TH(t) P([t]) Rounds up to round t where the honest
miner has mined a block. Equivalently, all
blocks up to block t owned by the honest
miner.

Table 2: Summary of the notation used throughout this paper (continued on the next page).
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Symbol(s) Domain Usage

UA(t) P(TA(t)) Blocks that the attacker has mined up to
round t but not yet published by round t.

UH(t) P(TH(t)) Blocks that the honest miner has mined up
to round t but not yet published by round
t.

V (t) P({0} ∪ [t]) Blocks published on or before round t, and
the genesis block.

E(t) P(N+ × N0) Pointers between blocks published on or
before round t.

Tree(t) Directed trees w/ a single sink. Tree induced by V (t) and E(t).
u, v N0 Some block/node/vertex in V .
A(b) P(V (b)) Ancestors of a published block b.
h(b) N0 Height of a published block b, defined as

|A(b)| − 1.
C(Tree(t)) N0 Longest chain in the tree Tree(t). That

is, the block in Tree(t) with the greatest
height, breaking ties in favor of blocks pub-
lished in earlier rounds, and then in favor
of earlier mined blocks.

A(C(Tree(t))) P(V (t)) Longest path in the tree Tree(t). That
is, the ancestors of the longest chain in the
tree Tree(t).

Hi(Tree(t)) N0 Block in the longest path in the tree
Tree(t) with height i.

B,B′, B′′ Valid states. State of the game with components V (B),
E(B), UA(B), UH(B), TA(B), and TH(B).

tB, |B| N0 Round on which state B occurs; also,
largest block mined at state B

(B) - Modifies {Tree,UA,UH , TA, TH , C, Hi} to
denote this object at state at B.

BHalf Valid states. If B occurs at the end of round t, the state
of the game during round t after a block
has been mined and after the honest miner
has taken an action but before the attacker
has taken an action.
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Symbol(s) Domain Usage

Bx∆ Subset of valid states. Collection of states which follow state B
where the attackers has a lead of x over all
blocks mined after B.

PublishSet(V ′, E ′) Valid actions at state. Action whereby a miner publishes block V ′

with points described by E ′.
PublishPath(Q, v) Valid actions at state. Action whereby a miner publishes a chain,

consisting of blocks Q, on top of block v.
Publish(k, v) Valid actions at state. Action whereby a miner publishes a chain,

consisting of the k smallest unpublished
blocks they own, on top of block v.

Wait - Shorthand for the action PublishSet(∅, ∅).
π Valid strategies. Strategy employed by the attacker; de-

terministic function which maps any valid
state to a valid action at that state.

Rev(t)
γ1,...,γt

(π) R+ Revenue of the attacker up to round t when
the mining sequence is γ1, ..., γt and the at-
tacker uses strategy π.

Rev(π, α), λ R+ Revenue of the attacker when the attacker
uses strategy π and mines each block inde-
pendently with probability α.

(Xt)t≥0 Mining games. Mining game where Xt is a random vari-
ables representing the state by the end of
round t and before any actions have been
taken in round t + 1. Unless otherwise
stated, we initialize X0 = B0. The game
transitions from Xt to Xt+1 once the next
block is created followed by the honest
miner taking their action followed by the
attacker taking their action.

τ N+ First time step at which some event occurs
in a mining game, usually a capitulation to
B0.

rA(B,B′) N0 Attacker reward between states B and
B′; the difference between the number
of blocks created by the attacker in the
longest path at state B′ and B.
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Symbol(s) Domain Usage

rH(B,B′) N0 Honest miner reward between states B and
B′; the difference between the number of
blocks created by the honest miner in the
longest path at state B′ and B.

rλ(B,B′) R+ Mining game reward between states B
and B′; defined as rλ(B,B′) = (1 −
λ)rA(B,B′)− λrH(B,B′)

V π
α,λ(B) R+ Objective function for state B

at mining strength α; defined as
EΓ [rλ(X0, Xτ )|X0 = B]

Vα(B) R+ Value function for state B at mining
strength α; defined as Vπ∗

α,λ∗(B) where λ∗ =
maxπ Rev(π, α) and π∗ is an optimal posi-
tive recurrent strategy for mining strength
α.

αPoS R+ Supremum α such that whenever no miner
mines the next block with probability big-
ger than α, it is a Nash equilibrium for all
miners to use the honest mining strategy
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M Availability of Materials

Source files, code, and other materials can be found at thesis.anthonyhein.com. Alternatively,

requests for these materials may be addressed to anhein@princeton.edu, anhein@cs.princeton.edu,

or anthonynhein@gmail.com.
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